Michael Dienst

Die Stall-Eigenschaften von Profilkonturen für Leit- und Steuerflächen an Seefahrzeugen

Reihenuntersuchungen NACA 0016

Wissenschaftlicher Aufsatz

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit, Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2013 GRIN Verlag ISBN: 9783656554356

Dieses Buch bei GRIN:

Michael Dienst

Die Stall-Eigenschaften von Profilkonturen für Leit- und Steuerflächen an Seefahrzeugen

Reihenuntersuchungen NACA 0016

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com

Die Stall-Eigenschaften von Profilkonturen für Leit- und Steuerflächen an Seefahrzeugen

Beuth Hochschule für Technik Berlin

FB Maschinenbau, Verfahrenstechnik Bionic Research Unit Dipl.-Ing. Mi. Dienst

Zusammenfassung. Der Untersuchung des NACA-Standardprofils NACA0016 hinsichtlich der Transitions- und Separationseigenschaften Anströmrichtung mit potentialtheroretischen Variation der unter Methoden werden generelle Erläuterungen zu laminaren und turbulenten Grenzschichten vorangestellt. Es sollen in dieser Arbeit Methoden bereitgestellt werden, die erste Aussagen über das Stallverhalten von Profilen für Leit- und Steuertragflächen von Seefahrzeugen liefern. Die Methoden werden an einem Standardprofil der vierstelligen NACA-Reihe erprobt und sollen fürderhin geeignet sein, synthetische Profile für Kraftund Arbeitstragflächen in unterschiedlichen Medien zu untersuchen. Es zeigt sich, dass die Aussagekraft von Strömungssimulationen mit der Potentialtheorie dort beschränkt ist, wo eine Korrelation der Transitionsund Separationseigenschaften auf einer Tragflächen-Profiloberfläche mit phänomenologischen Stallkriterien, etwa dem "Einbruch" der Quer- oder Auftriebskraft am Tragflügel hergestellt werden soll. Integral- und Mittelwerte stellen aber äußerst hilfreiche erste Informationen bei der Entwicklung synthetischer Profile für Kraft- und Arbeitstragflächen von Leit- und Steuertragflächen von Seefahrzeugen dar.

Intro. Bei Seefahrzeugen in Fahrt und beim Manövrieren ist die optimale und an Strömungswiderständen arme Funktionsweise entscheidend für Fahrleistungen. Zu höchste den Leitund Steuerflächen im Unterwasserbereich von Seefahrzeugen gehören die Ruderanlage, bzw. die Ruderblattfläche. Ruderblätter besitzen in der Regel symmetrische Profile. bilden symmetrisch profilierte Kraft-In Fahrt und Arbeitstragflächen dann ein Querkraft generierendes System, wenn die Anströmung nichtaxial erfolgt. Dabei ist die Variation des Auftriebs (Querkraft, Lift) eines symmetrischen Profils über den Anstellwinkel selbst symmetrisch. Die aus dem hydrodynamischen Auftriebsgebaren der Ruderblattfläche resultierende Querkraft wird beim Manövrieren genutzt.

Neben der Querkraftleistung einer Kraft- und Arbeitstragfläche interessieren die Verluste im Betrieb. Im Allgemeinen setzt sich der strömungsmechanische Widerstand einer voll getauchten Leit- und Steuerflächen aus Reibungs- und Formwiderstandsanteil zusammen. Für schlanke Körper, wie Tragflügel, überwiegt der Anteil der Reibung, der in erster Linie durch den Charakter der wandnahen Strömung bestimmt wird, die laminar oder turbulent sein kann. Grundsätzlich ist eine Strömung über festen Wänden zunächst laminar, wird dann mehr oder weniger rasch instabil und schlägt in turbulente Strömung um: Transition. Mit dem Übergang von laminarer zu turbulenter Strömung nimm die Wandreibung erheblich zu. Es sind aber nicht alleine

Oberflächen Strukturen oder die Rauheit der Tragfläche, die das Umschlagverhalten der wandnahen Strömung beeinflussen. Auch die Kontur des Tragflächenprofils, insbesondere seine Krümmung und dessen Änderung über

den Strömungspfad haben Einfluss auf den Transitionsort. Das Strömungsprofil einer Leit- und Steuerfläche bezeichnet die Form eines Tragflügelsektors in Strömungsrichtung des umgebenden Fluids. Die Strömungsprofils ist die umhüllende Gestalt des Kontur eines Strömungskörpers. Durch die spezifische Form von Kraftund Arbeitstragflächen und durch die Umströmung des Fluids kommt es zu einem Wechselwirkungsgeschehen, das durch Energieaustausch gekennzeichnet ist, derart, dass Krafttragflächen fluidmechanisch wirksame Tragflügel darstellen die geeignet sind, dem bewegten umgebendem Fluid Energie vornehmlich zu entziehen und Arbeitstragflächen fluidmechanisch wirksame Tragflügel darstellen die vornehmlich Energie in ein umgebendes Fluid einkoppeln. Für Kraft- und Arbeitstragflächen wird in der Regel eine mechanisch starre Form, ein deklaratorisch definiertes Profil und eine nichtflexible Kontur angestrebt. Die Profile von Kraft- und Arbeitstragflächen sind in der Regel entweder symmetrisch oder definiert asymmetrisch. definiert Ruder sind üblicherweise aus symmetrisch profiliertem Vollmaterial.

Querkraft Stall. Tragverhalten und Das einer Leitoder Steuertragfläche im Betrieb wird durch das Auftriebsund Widerstandsgebaren charakterisieret in einem Zustandsbereich, der sich von der auftriebslosen zentrierten Anströmung bis zu einer degenerierten Umströmung der Kraft- und Arbeitstragfläche erstreckt.

Kommt es bei einer Tragflächenumströmung zu einem zu einem Ablösen der der konturnahen Strömungsschicht, spricht man von einem Strömungsabriss (engl.: stall). Es kann sich um die Ablösung einer laminaren oder einer turbulenten Strömung handeln. Mit dem Strömungsabriss verändert sich auch (schlagartig) das Auftriebsgebaren der Profilkontur.

Den entscheidenden aber wahrscheinlich nicht einzigen Einfluss auf das Stallverhalten symmetrisch profilierter Kraft- und Arbeitstragflächen nimmt der Anstellwinkel des Profils in der Strömung. Bei den hier betrachteten Leit- und Steuerflächen sind die Relativgeschwindigkeit klein gegenüber der Schallgeschwindigkeit, so dass Inkompressibilität gilt für inkompressible, wird. Somit stationäre angenommen viskositätsfreie Strömung konstanter Dichte in einem Gebiet das keine Wirbel enthält, dass die Summe aus dem Quadrat der Geschwindigkeit und dem Quotient aus Druck und Dichte ist konstant. Nützlich in diesem Impulserhaltung Zusammenhang ist der Satz der in einem Strömungsfeld, nach dem sich der Impuls nur unter Einfluss von Kräften ändert.

Tatsächlich resultiert die Auftriebskraft einer fluidmechanisch wirksamen Leit-, Steuer und/oder Antriebsfläche aus der Superposition einer Translations- und einer Zirkulationsströmung. Betrachtet man einen Profilschnitt einer unter kleinem Anstellwinkel angeströmten ortsfesten Leitfläche (Eulerszenario), so erscheint die Zirkulation an der Leeseite in Anströmrichtung, auf der Luvseite entgegen der Anströmrichtung. Die Superposition führt zu einer verlangsamenden Strömung auf der Luvseite und zu einer Beschleunigung in Lee. Kontinuitätsbeziehung und bernoullische Argumentation wiederum führen zu einem relativen Überdruckgebiet an der Luv- und einem relativen Unterdruckgebiet an der Leeseite und zum erwarteten Auftriebsgebaren der Leitfläche. Die Entstehung der Zirkulationsströmung ihrerseits kann erklärt werden derart, dass die Viskosität des Fluids in der Grenzschicht zu einer der Horizontalströmung vertikale Scherung führt. Bei kleinen Krümmungen hat die Strömung die Tendenz, in Strömungsrichtung der Kontur eines Profils zu folgen. Direkt an der Konturlinie ist die Geschwindigkeit Null. Mit zunehmendem Abstand von der Profilkontur (in der Grenzschicht) wird die Geschwindigkeit größer, bis sie die Fluidgeschwindigkeit der Außenströmung erreicht. Durch diese Scherung hat das Fluid in der Grenzschicht eine Wirbelstärke. Die Viskosität bewirkt Kräfte, durch die die Geschwindigkeiten benachbarter Stromlinien angeglichen sowie die Wirbelstärke homogenisiert werden. Verlässt nun ein Teilchen mit seiner Wirbelstärke wegen der gebogenen Kontur die Grenzschicht tangential, wird die Viskosität die Scherung des Geschwindigkeitsfeldes homogenisieren und die Wirbelstärke bleibt auf einem mittleren Wert. Mangels Scherung erzwingt sie eine gekrümmte Trajektorie in Richtung zurück zur Konturlinie. Als Gegenkraft hierzu verringert sich der Druck an der Kontur. Dieser niedrige Druck beschleunigt auch Fluid oberhalb der Grenzschicht nach unten. Der Druck ist auch niedriger als der Druck entlang der Profillinie stromaufwärts. Deshalb wird die Strömung auch tangential über die Profilkontur nach hinten beschleunigt.

Krümmung der Stromlinien. Anstellwinkel und Geometrie (Kontur) des wirksamen Leitflächenprofils fluidmechanisch erzwingen eine Richtungsänderung der Stromlinien des anströmenden Fluids. Ich stelle mir vor: Bewegte sich das betrachtete Fluidvolumen infolge der Massenträgheit auf einer geraden Linie fort, würde sich die Entfernung zur (Stör-) Kontur des Leitflächenprofils sofort vergrößern und somit ein Gebiet niedriger Dichte entstehen, was wir in unseren Betrachtungen über ein inkompressibles Fluid aber gerade ausschließen möchten. Also erzwingt die Bedingung konstanter Fluiddichte einen Druckgradienten entlang der betrachteten Stromlinie - guasi über die Strömung des Fluids - um das Hindernis herum. Nahe der Profilkontur kommt es zur Ausbildung der Grenzschicht. Durch die Scherkräfte in der Grenzschicht folgt das Fluid der Kontur des Profils. Mit zunehmender Entfernung vom Profil nimmt die Ablenkung der (ferneren laminaren) Strömung ab. Generiert die Krümmung der Stromlinien einen Druckgradienten, so führt die Kontinuitätsbeziehung und bernoullische Argumentation wieder zu einem relativen Überdruckgebiet an der Luv- und einem relativen Unterdruckgebiet an der Leeseite und zum Auftriebsgebaren der l eitfläche

Impulsänderung. Der räumliche dreidimensionale Tragflügel muss durch eine unsymmetrische Umströmung die zur Entstehung der Querkraft notwendige Zirkulation selbst erzeugen. Analog zur Kreisumströmung entsteht bei Tragflügelprofilen die dynamische Querkraft (Auftrieb) nur dann, wenn eine gleich große vertikale Impulsänderung erfolgt. Diese Impulsänderung wird erreicht, indem die Tragfläche (das Tragflächenprofil) Fluid (nach unten) ablenkt. Es ist üblich, den Strömungszustand um ein Strömungsbauteil über die Reynolds-Similarität zu beschreiben¹.

kin. Viskosität ν [m²·s⁻¹]

Schallgeschw. **a** [m·s⁻¹]

¹ Stoffgrößen einiger Strömungsmedien

Reynolds-Zahl Re = $v \cdot L / n$ [-] (F1)

Als "klein" sollen Anströmgeschwindigkeiten und/oder geometrische Bauteilabmessungen gelten, die einen Bereich von Reynolds-Zahlen {Re<5000} determinieren. Gestaltungsstrategien zur Strömungskontrolle entlang der Kontur eines Profils in einem Bereich kleiner Reynolds-Zahlen können den Ort des Umschlagpunktes von laminarer in turbulente Strömung betreffen.

Das Tragflügelprofil muss so gestaltet und entsprechend "angestellt" sein, dass es aus der Anströmsituation eine für die Querkrafterzeugung notwendige Zirkulation erzeugen kann. In einer potentialtheoretischen Betrachtung werden zunächst zwei "Staupunkte identifiziert. Eine scharfe Tragflügelprofil Profilhinterkante bewirkt. dass das von unten herkommend nach oben bis zum hinteren, auf der Profiloberseite liegenden Staupunkt umströmt werden muss. Diese Umströmung einer Hinterkante führt (theoretisch) einer plötzlichen scharfen zu Richtungsänderung der Geschwindigkeit; mathematisch gesehen eine (unendlich) große Beschleunigung der Strömung. Die (anfängliche) hintere Umströmung ist nicht stabil und kann daher nicht lange bestehen. Dies hat zur Folge, dass die Strömung an der Hinterkante sehr rasch ablöst. Gleichzeitig bildet sich ein Wirbel durch das Aufrollen einer sich ablösenden Grenzschicht. Dieser sog. Anfahrwirbel schwimmt mit der Strömung nach hinten ab. Nach dem Satz von Thompson ist die Gesamtzirkulation im Gleichgewicht (Summe ist Null); dies hat zur Folge, dass sich um das Tragflügelprofil herum ein zweiter, entgegengesetzt drehender Wirbel bildet. Dieser gebundene Wirbel stellt die notwendige Zirkulation um den Tragflügel und entsteht somit aus der vom Profil verursachten unsymmetrische Umströmung, bei der das Fluid auf der Unterseite verzögert, und auf der Oberseite des Profils Beschleunigt wird.

Druckverteilung. Das gegenüber dem herrschenden Normaldruck relative Unterdruckgebiet auf der Profilkonturoberseite und das gegenüber dem herrschenden Normaldruck relative Überdruckgebiet auf der Profilkonturunterseite repräsentieren das Auftriebsbzw. Querkraftgebaren Tragflügelprofils. Dabei trägt relative des Unterdruckgebiet auf der Profilkonturoberseite wesentlich (3/4) zur bei. Der Druckgradient korreliert Gesamtquerkraft nach der

Energiegleichung (Bernoulli) mit der Geschwindigkeit und deren Änderung an der Profilkontur. Die Strömung hat grundsätzlich die Tendenz, der Profilkontur zu folgen. Den größten Einfluss auf die Eigenschaften des Profils haben:

- Profilwölbung und Wölbungsrücklage,
- maximale Profildicke und die Änderung der Profildicke entlang der Profilsehne,
- Nasenradius,
- Hinterkante (Form der Skelettlinie nahe der Hinterkante gerade Skelettlinie oder aufwärts geschwungen; Winkel zwischen Oberund Unterseite an der Hinterkante).
- Der Auftriebsanstieg hängt im normalen Anwendungsbereich linear vom Anstellwinkel ab. Die Steigung ΔCa/Δα beträgt für alle Profilformen etwa 0,11 pro Grad
- Der maximale Auftrieb wird von der Wölbung, dem Nasenradius und der Dicke bestimmt.

Grenzschicht-Kriterien. Die Grenzschichttheorie² beschäftigt sich mit Fluidbewegung bei sehr kleiner Reibung. Der Übergang von der laminaren (schichtenartigen, ruhigen) in die turbulente (unruhige, vermischende) Strömungsform stellt ein zentrales Problem der Strömungsmechanik dar. Diese Transition tritt bei Scherströmungen auf, also dann, wenn sich in einem Fluid die Geschwindigkeitskomponente quer zur Hauptgeschwindigkeits-richtung stark ändert. An jedem umoder durchströmten Körper bildet sich direkt an der Körperoberfläche eine Grenzschicht aus, innerhalb der sich die Geschwindigkeit des Fluids aufgrund Reibung an die Geschwindigkeit der Körperoberfläche angleicht. Diese Grenzschicht verursacht im laminaren Zustand einen erheblich geringeren Reibungswiderstand als im turbulenten Zustand. Sehr kleine Störungen mit Wellencharakter (die Tollmien-Schlichting Wellen) werden mit zunehmender Laufstrecke in der Grenzschicht verstärkt. Sie verursachen einen Übergang zur turbulenten Grenzschicht und damit einen höheren Widerstand. In der Grenzschicht eines fluiddynamisch wirksamen Körpers besitzt die Reibung Einfluss auf das Geschwindigkeitsprofil des Fluids. In der Regel ist die Strömung erst laminar (lat. lamina, "Platte"), dann turbulent; Verwirbelungen und

² Ludwig Prandtl (* 4. Februar 1875 in Freising; † 15. August 1953 in Göttingen) war ein deutscher Physiker. Er lieferte bedeutende Beiträge zum grundlegenden Verständnis der Strömungsmechanik und entwickelte die Grenzschichttheorie und führte die Grenzschichttheorie im Jahr 1904 bei einem Vortrag auf dem Heidelberger Mathematiker-Kongress ein.

Querströmungen herrschen vor. Die laminare Strömung ist eine Fluidbewegung, bei der keine sichtbaren Turbulenzen auftreten: Das Fluid strömt in Schichten, die sich nicht miteinander vermischen. alle Teile der Grenzschicht einer parallelen Strömung sind der Hauptströmung gleichgerichtet.

Die Laminare Unterschicht ist, abhängig vom Fluid, nur wenige Millimeter dick. Die Fluidströmung ist hier laminar. Erst in einer darüber liegenden Schicht ist die Strömung turbulent. Alle Vertikaltransporte von Impuls, Energie und Stoff erfolgen durch Molekularbewegungen (Geschwindigkeitsfluktuationen). Die kinetische Energie (Strömungsenergie) der turbulenten Schicht ist wesentlich größer als in der laminaren Schicht, mit der Folge, dass der Strömungswiderstand der turbulenten Grenzschicht größer ist (Newton'sches Reibungsgesetz). Die Umgebungsströmung nährt die turbulente Grenzschicht, d.h. aus der Außenströmung wird durch Impulsaustausch der turbulenten Grenzschicht ständig Energie zugeführt. Dieser Energietransport ist dafür verantwortlich, dass der vertikale Geschwindigkeitsgradient sehr steil verläuft. Dies wiederum führt zu einer gewissen Robustheit der turbulenten Grenzschicht; sie ist unempfindlicher gegenüber einer Ablösung der Strömung. Die turbulente Grenzschicht überwindet (im Gegensatz zur laminaren Grenzschicht) deshalb ohne Ablösung einen bis zu dreifachen Druckanstieg an der Tragflächenprofilkontur. Die Laminare Unterschicht ist eine viskose Schicht in Wandnähe; sie unterliegt der turbulenten Grenzschicht. Die Ursache der laminaren Unterschicht wird mit Schwankungskomponenten der Geschwindigkeit in Wandnähe des Strömungskörpers erklärt, die superponierbar sind. Infolge Haftbedingung (an der Wand wird das Fluid durch Reibung zum Stillstand gebracht) Reflektionen (Wand), Dämpfung (Fluid) und der Superponierbarkeit der Strömungsanteile kommt es zu einer

Homogenisierung und zur Ausbildung einer sehr dünnen. diskreten konturnahen Schicht. Deren Dicke beträgt nur 2% bis 5% der gesamten Grenzschicht aus laminarer Unterschicht und turbulenter Oberschicht. Je weiter ein Fluidteilchen (in der laminaren Unterschicht) von der Wand entfernt ist. desto höher ist dessen Geschwindigkeit. Von der Wand bis zur Grenze der Grenzschicht kann Geschwindigkeitsprofil das als

ULT Umschlagpunkt (laminar in turbulent)

- L laminare Grenzschicht
- T Turbulenz
- ABP Ablösepunkt
- AB Ablösegebiet mit Rückströmung

quadratische Funktion angenähert werden.

Umschlagpunkt. Der Umschlag der laminaren Grenzschicht in eine turbulente Schicht (Transition zur Turbulenz) ist aus physikalischer Sicht ein Stabilitätsproblem. Die mathematische Beschreibung (Grenzschicht-Differentialgleichungen) des Umschlags der laminaren Grenzschicht in eine turbulente Schicht wird mit instabile Störungen, so genannten Tollmien-Schlichting(TS)-Wellen äußerster Komplexität in Verbindung gebracht, deren Physik bislang nicht vollständig beschrieben ist und die nur schwer beschreibbaren Zuständen der laminaren Unterschicht Aber begründet. es gibt experimentelle Lösungen. In Strömungsversuchen taucht regelmäßig das Phänomen auf, dass der Umschlagpunkt der laminaren in die turbulente Grenzschicht (Transition zur Turbulenz) an der Stelle des Druckminimums der Außenströmung auftritt. Die Zustandsgrößen der Außenströmung ihrerseits können genügend genau mit einem potetialtheoretischen Berechnungs-ansatz ermittelt werden. Auf diese Weise werden die Umschlagpunkte an der unteren und an der oberen Profilkontur ansatzweise berechnet.

Unter- und Überkritische Strömung. Als unterkritische Profilumströmung wird die laminare Grenzschicht benannt. Überkritische Strömung herrscht, wenn der laminaren Strömung eine turbulente Strömung nachfolgt. Der Umschlag von einem unterkritischen Zustand in den Überkritischen Zustand erfolg bei umso kleineren Geschwindigkeiten, je Strömungskörper Die Korrelation schlanker ein ist. zu den entsprechenden Reynoldszahlen ist in der Strömungsmechanik üblich. große Reynoldszahlen: die Strömung ist turbulent, d. h. innerhalb der Grenzschicht können die Teile der Strömung bis hinab in den molekularen Bereich jede Richtung annehmen, ihre Dicke bleibt jedoch eng begrenzt. In der Hauptströmung bleibt die Geschwindigkeit konstant verteilt. Anschaulich gesprochen führt eine Konturverbreiterung zum lokalen Anlegen der Strömung an den Strömungskörper. Auf diese Weise kann eine Strömung über die Konturgeometrie über eine gewisse (aber nicht beliebig lange) Strecke der Tragflügelwsand im Sinne einer Laminarisierung konditioniert werden. Dies ist (eins von mehreren) Gestaltungskonzepten für ein unterkritisches Laminarprofil.

Bei scharfkantigen (gegebenenfalls schlanken) Strömungskörpern erfolgt der Umschlag von laminarer Strömung in turbulente Strömung direkt an der Strömungskörperspitze. Hier wird die Strömung schlagartig turbulent. Am dreidimensionalen Tragflügel kann es bei schräger Anströmung direkt an der Strömungskörperkante zu einer Ablösung kommen. Man unterscheidet zwischen dem Ort des Strömungsumschlags und dem Ort des Ablösezustands an einer Tragflügelprofilkontur. **Stall.** Im Bereich kleiner und mittlerer Reynoldszahlen ist eine ungünstige, in aller Regel nichtaxiale Profilanströmung Ursache für den Stall. Profilkonturen zeigen hier sehr unterschiedliche Charakteristika hinsichtlich des maximalen Anstellwinkels α_{STALL} , bei dem ein Strömungsabriss auftritt. In messtechnischen Untersuchungen tritt dieser Winkel deutlich als Kurvenmaximum hervor, da sich genau hier das Auftriebsverhalten des (realen) Tragflügels gegenüber einem Bereich ähnlicher, aber kleinerer Anstellwinkel unterscheidet.

Wenn es gelingt den Bereich der fluidmechanischen Tragfähigkeit der Profilkontur zu vergrößern, den Stallwinkel α_{STALL} hin zu größeren zu verschieben, Steuerflächen werden Leitund Werten an Seefahrzeugen leistungsfähiger im Sinne der Querkraftgenerierung und Arbeitstragflächen angesteuerte (etwa) Rudertragflächen von Seefahrzeugen besitzen Fehlertoleranz in einem größeren Bereich.

Die Beschaffenheit der Gesamtkonstruktion einer Kraft- oder Arbeitstragfläche kann auf eine "gutmütige Stall-Charakteristik" hin ausgerichtet sein dahingehend, dass bei unbeabsichtigtem Eintreten in den Stall keine abrupten Querkraftverluste eintreten. Diese Robustheit der Tragflügel werden mit Abschlägen des Auftriebs (der Querkraft) und erhöhtem Widerstand im Regelbetriebspunkt erkauft und führen zu einer generellen Leistungsminderung der Kraft- und/oder Arbeitstragfläche. Deshalb ist es für den Entwickler neuer Ruderblattgeometrien und Profile viel interessanter, die Ursachen der Stallentstehung zu untersuchen und gegebenenfalls Maßnahmen anzuwenden und Methoden zu entwickeln, die zu einer Strömungskontrolle an der Profilkontur führen.

Unter Strömungsmechanikern, insbesondere Aeromechanikern - bei Flugzeugen entscheidet der Strömungsabriss gegebenenfalls über Leben und Tod - ist die Ansicht verbreitet, der Strömungsabriss hänge "einzig" vom Anstellwinkel der Profilkontur ab: "Das Auftreten eines Strömungsabrisses hängt ausschließlich vom Anstellwinkel ab. Dennoch kann man diesem Winkel in der Praxis eine Geschwindigkeit zuordnen. Je geringer die Geschwindigkeit eines Flugzeuges wird, desto mehr muss der Anstellwinkel erhöht werden, damit das Flugzeug ohne an Höhe zu verlieren geradeaus fliegt. Will man zudem noch ohne Höhenverlust eine Kurve fliegen, muss der Anstellwinkel zusätzlich erhöht werden. Die Geschwindigkeit, bei der es im Geradeausflug zum Abrissgeschwindigkeit^[1], Strömungsabriss kommt, nennt man Überziehgeschwindigkeit, halbenglisch Stall-Geschwindigkeit, oder auch als englisches Fremdwort Stallspeed. Fliegt ein Flugzeug schneller als Stallspeed, aber langsamer als mit der vom Hersteller festgelegten Mindestgeschwindigkeit, dann gerät es in den Sackflug. Die Strömung an den Tragflächen ist bereits turbulent, der Auftrieb stark vermindert,

das Flugzeug "sackt durch". Die Strömung ist aber noch nicht völlig abgerissen und das Flugzeug bleibt – eingeschränkt – steuerbar "[w-001].

Für Flugzeuge ist diese Sicht der Dinge durchaus angebracht, da sich die Tragflügelprofile nur sehr selten in einem "auftriebsfreien" Zustand befinden. Bei Leit- und Steuerflächen von Seefahrzeugen allerdings herrschen andere Betriebszustände vor. Während der manöverfreien Geradeausfahrt könnte man theoretisch das Seitenruder vollständig aus der Strömung entfernen - bei Rennjollen durchaus probate Praxis. Schiffsstabilisatoren werden in der Regel nur bei unwirtlichen Verhältnissen gefahren. Betrachten wir praxisrelevante Rudertragflächen, so zeigt sich, dass in der "realen" auftriebslosen Geradeausfahrt Strömungsablösungen auftreten mit der Folge einer Vergrößerung des Druckwiderstands. Dieses Ablösegebaren ist regelmäßig periodischer Natur und in der Definition der dimensionslosen "Strouhalzahl³, Sr" gegenwärtig, die für eine ideale, zentrale Anströmung eines (ideal-) svmmetrischen Strömungskörpers, die Frequenz der zeitlichen Wirbelentwicklung im Nachlauf des Strömungskörpers, beispielsweise einer Karman'schen Wirbelstraße⁴ bestimmt.

Strouhalzahl Sr =
$$(f \cdot L \cdot v^{-1})$$
 (F2)

Die Strouhalsimilarität tritt bei der Beschreibung instationärer Strömungszustände auf und ist von der Reynoldszahl abhängig (bzw. der Geschwindigkeit der ungestörten Strömung v $[ms^{-1}]$). Die Strouhal-Zahl *Sr* ist das Verhältnis aus dem Produkt aus Wirbelablösefrequenz *f*. $f = 1/t [s^{-1}]$ und einer Referenzlänge, etwa der der Größe des umströmten Hindernisses L und der Strömungsgeschwindigkeit v. Für die meisten praktischen Anwendungen gilt die Näherung Sr [-] = 0,2. Für Sr [-] = 0 kann die Strömung als quasistationär betrachtet werden. Dies werden wir in den nachfolgenden Betrachtungen als vorausgesetzt ansehen.

1)

Am Beispiel des Ablösegebarens der "idealen" auftriebslosen Geradeausfahrt einer Rudertragfläche lassen sich die physikalischen Phänomene in der Grenzschicht einer Profilkontur studieren mit dem Ziel generaler Gestaltungsempfehlungen für den Entwurf leistungsfähiger Leit- und Steuerflächen von Seefahrzeugen (Handbuch Laminarprofile für Rudertragflächen). Die potentialtheoretischen Betrachtungen werden

³ **Vincent Strouhal** auch **Čeněk Strouhal** (* 10.4.1850 in Seč; † 23. Januar 1922 in Prag) war ein tschechischer Physiker auf dem Gebiet der (Hydrodynamik) und ein Fachmann der Experimentalphysik.

⁴ **Theodore von Kármán** (* 11. Mai 1881 in Budapest als *Kármán Tódor*, † 7. Mai 1963 in Aachen) war ein österreichischer (österreichisch-ungarischer)/amerikanischer Physiker und Luftfahrttechniker.

zu dem NACA-Standardprofil⁵ NACA0016 durchgeführt, das derzeit Gegenstand mess- und simulationstechnischer Untersuchungen in unserem Hause ist [Voss-12-1] [Voss-12-2] [Voss-13].

Grenzschichtdicken (boundary layer thickness). Die Definition einer Grenzschicht bzw. einer in Normalenrichtung zur Profilkontur beschriebenen Dicke δ der Strömungsgrenzschicht ist eine Konvention und in gewisser Weise willkürlich, da sich der Übergang der Geschwindigkeit in die Außenströmung asymptotisch vollzieht ⁶. In der Literatur wird als Grenzschichtdicke der Abstand von der Wandkontur definiert, an dem sich die Geschwindigkeit nur noch um 1% von der Außenströmung unterscheidet (Definition nach Schlichtung⁷). Für diesen Abstand zur Wandkontur hat sich der Begriff der Grenzschichtdicke δ_{99} [m] etabliert.

(D3)

Figur D3: Grenzschichtdicke.

Der phänomenologischen Grenzschichtdicke δ_{99} [m] werden folgend weitere, physikalisch begründbare Grenzschichtdicken zur Charakterisierung der der Konturwand des Profils nahen Außenströmung beigestellt. Die Idee der Verdrängungsdicke δ_1 [m] ist die einer virtuellen

⁵ Profilsystematik, NACA (National Advisory Committee for Aeronautics, später NASA)

⁶ Sieglich, H. (2009) Technische Fluiddynamik. S. 96 ff. 7. Auflage. Springer Verlag Heidelberg, London, N.Y.

⁷ Schlichting, H. Grenzschichttheorie, Springer Verlag Berlin.

und Schlichting, H (2000) Boundary-Layer Theory, Springer ISBN 3540662707

Hüllkurve um die Profilkontur, die eine intakte Außenströmung von wenig homogenen Strömungsbereich einem konturnahen und Impulsverlustdicke (scheinbar) separiert. Die δ_2 [m] und die Energieverlustdicke δ_3 [m] beschreiben jene Bereiche um eine Kontur in denen Impuls- und Energie-Wechselwirkungen beobachtbar, messbar und in einer mathematischen (und numerischen) Weise beschreibbar werden. Wir sprechen in diesem Zusammenhang von Gebieten und Betrachtungen auf weil sich die eine Profilkontur Flächen. (zweidimensionale Profilkontur, im Englischen: wing section) beziehen. Der reale Flügel bildet freilich eine - im treffenden Sinne - räumliche Grenzschicht aus, deren Dicke über eine Hüllfläche um den Tragflügel variiert. Für die Entwicklung neuartiger Profilkonturen ist aber zunächst die Betrachtung des ebenen Falls (Profilkontur) vorteilhaft.

In realen Grenzschichten ist die Geschwindigkeit der Strömung aufgrund der Haftbedingung nahe der Körperwand gegenüber einem fiktiven idealisierten Fall (ohne Haftbedingung) vermindert. Dies hat eminente energetische Konsequenzen. Anders als in dem realistischen Fall einer Strömung, die von Verharren und Haftung des Mediums an den Körperwänden gekennzeichnet sei, ist die Impulshaltigkeit der Strömung und die kinetische Energie in der "Nähe der Wandkontur" des Profils (also in der so genannten Grenzschicht mit der Schichtdicke δ_{99} [m]) vermindert.

Abgeleitete Grenzschichtdicken $\delta_1 \delta_2 \delta_3$. Gegenüber dem idealisierten Fall ohne Grenzschicht wird die gesamte Außenströmung im realen Fall (Strömung mit Haftbedingung) nach außen gedrängt. Die Breite dieser Verrückung wird in Normalenrichtung zur Profilkörperkontur und in der Einheit [m] gemessen oder auf die Profiltiefe t normiert (δ_1/t) angegeben. Der Betrag der Verdrängungsdicke δ_1 [m] ist abhängig von der (tatsächlichen) Lauflänge der Strömung, also nicht normiert. Die Verdrängungsdicke δ_1 [m] ist wie die Grenzschichtdicke δ_{99} [m] eine definitorische Größe, für die folgende Annahme gilt: Man findet die Verdrängungsdicke in einem Geschwindigkeitsgradienten senkrecht zur Profilkörperkontur gerade dort. wo der Flächeninhalt der Geschwindigkeitskurve (das Integral unter der Kurve) im Gleichgewicht Dies ist schematisch in obiger Skizze angedeutet. Die steht. Verdrängungsdicke δ_1 spannt somit eine (fiktive) Hüllkontur des Profils auf, um die eine Potentialströmung verdrängt würde, wenn sie die gleiche Masse wie die Grenzschicht-strömung transportieren würde. Außerhalb dieser Hüllkontur besitzt die Außenströmung die Qualität einer Potentialströmung. Mit der Geschwindigkeit c(n) im Innern der Hüllkurve, die in Normalenrichtung (n) von der Konturwand variiert, der Geschwindigkeit V der idealisierten Potentialströmung außerhalb der Hüllkurve und den Bereichsgrenzen $\{0...\delta_{99}\}$ erhalten wir eine Formulierung der Verdrängungsdicke δ_1 als Integral über eine Kurve der dimensionslosen Geschwindigkeit (c/V) in den identifizierten Bereichsgrenzen:

Verdrängungsdicke
$$\delta_1 = \int_0^{\delta} (1 - (c(n)/V)) dn$$
 (F4)

Mit einer Similaritätsbetrachtung⁸ lässt sich der Gradient der dimensionslosen Geschwindigkeit (c(n)/V) der über die Normalenrichtung (n) senkrecht der Konturwand variiert, weiter auswerten.

Größen und Einheiten zur Dimensionsanalyse

(T5)

Größe	Symbol	Einheit	Dimension
Länge	n	[m]	L
Volumenelement	(dx dy dz)	[m ³],	L ³
Fläche	A _{vz}	[m ²],	L ²
Geschwindigkeit	c,v,V	[m/s]	L • T ⁻¹
Beschleunigung	а	[m/s ²]	L • T ⁻²
Impuls	I	[kg m/s]	M•L •T ⁻¹
Energie, Arbeit	W	[kg m ² /s ²], [J]	$M \bullet L^2 \bullet T^{-2}$
Leistung	Р	[kg m ² /s ³], [W]	$M \bullet L^2 \bullet T^{-3}$
Dyn. Viskosität	μ	[N s /m ²]	M • L ⁻¹ • T ⁻¹
Kin. Viskosität	v	[m²/s]	$L^{2} \bullet T^{-1}$

Eine Dimensionenbetrachtung über den Impuls und über die Energie führt zu zwei weiteren Formulierungen für Grenzschichtdicken.

Impulsaustauschdicke⁹ $\delta_2 = \int_0^{\circ} (c(n)/V) \cdot (1 - (c(n)/V)) dn$ (F6)

Die Impulsaustauschdicke δ_2 beschreibt die Dicke einer Grenzschicht, bei der eine Potentialströmung den gleichen Impulstransport wie die

(e-Book): 978-3-656-08872-1 und Dienst, Mi.(2011) Methoden in der Bionik. Die reynoldsbasierte fluidische Fitness. GRIN Verlag GmbH München, ISBN (Buch): 978-3-640-90894-3

⁸ siehe auch: Dienst, Mi.(2012) Methoden in der Bionik. Kennzahl für die Fluid-Struktur Wechselwirkung. GRIN Verlag GmbH München, ISBN (Buch): 978-3-656-08838-7,

⁹ In der Literatur als Impulsverlustdicke bezeichnet. Siehe hierzu auch: Schlichting, H. (2000) Boundary-Layer Theory, Springer ISBN 3540662707

Grenzschichtströmung hätte. In diesem Zusammenhang ist noch eine auf ein Längenmaß aus der Grenzschichtgeometrie bezogene, spezifische Geschwindigkeit von Belang, die lokale Reynoldszahl:

Lokale Reynoldszahl
$$\operatorname{Re}_{\delta 2} = v/V \cdot \delta_2 / v$$
 [-] (F7)

Des weiteren ist die Energieverlustdicke δ_3 die ein Maß für den Energieverlust der Grenzschichtströmung, verglichen mit der idealen Potentialströmung.

Energieverlustdicke
$$\delta_3 = \int_0^{\delta} (c(n)/V) \cdot (1 - (c(n)/V)^2) dn$$
 (F8)

Die Verdrängungsdicke δ_1 , die Impulsaustauschdicke δ_2 und die Energieverlustdicke δ_3 sind fester Bestandteil der Grenzschichttheorie. Es ist aber in der Entwicklungspraxis zu beachten, dass alle drei Dickenmaße synthetische Formulierungen sind, den gleichen (letztendlich phänomenologischen) Geschwindigkeitsgradienten (c/V) auswerten und am Modellsystem des ebenen Plattenprofils entworfen wurden.

Da wir in diesem Aufsatz auf der Suche nach Kriterien für die charakteristischen Stalleigenschaften (ebenfalls synthetischer) Profilkonturen sind, kommt die Energieverlustdicke δ_3 die rein mathematisch betrachtet eine generalisierte Norm zweiten Grades über den Geschwindigkeitsgradienten darstellt, vor dem Hintergrund einer Sensitivitätsbetrachtung der Grenzschicht unseren Erfordernissen am ehesten nach. Letztendlich ist es der Energieaustausch, der eine Strömung in den Ablösezustand zwingt.

Grenzschichtdickenverfolgung. Unter Stall wird der durch Strömungsablösung hervorgerufene Einbruch des Auftriebs (loss of Lift) bzw. der Querkraft einer Kraft- und/oder Arbeitstragfläche verstanden: *In fluid dynamics, a "stall" is a reduction in the lift coefficient generated by a foil as angle of attack increases¹. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15 degrees, but it may vary significantly depending on the fluid, foil, and Reynolds number [w-2].*

Im deutschsprachigem Raum beschreibt der Begriff des Stalls (Stall, stalling) die Ursache des Einbruchs der Querkraft einer Kraft- und/oder Arbeitstragfläche, bzw. der Strömungsablösung, den Abriss der

Strömung selbst. Dieser Argumentation folgend besitzt die Stall-Ursache Strömungsablösung einen Zeitpunkt oder einen Ort auf der Profilkontur, der im Rahmen einer messtechnischen oder numerischen Grenzschichtanalyse terminiert und/oder lokalisiert werden kann. Die Verfolgung der für einen Strömungszustand ermittelbaren Größen Verdrängungsdicke Impulsaustauschdicke δı und δ2 Energieverlustdicke δ_3 liefert Charakteristiken einer Profilkontur für das Stall-Verhalten im (idealisierten) Betrieb.

x/t [-]	y/t [-]	
0,39604415	0,07690138	
0,44773577	0,07381149	NACA DOAS
0,5000000	0,06974700	
0,55226423	0,06488268	
0,60395585	0,05939522	
0,65450850	0,05345697	
0,70336832	0,04723245	
0,75000000	0,04087742	
0,79389263	0,03453981	Roordinaten und Kontur eines
0,83456530	0,02836171	symmetrischen Standardprofils der
0,87157241	0,02248112	vierstelligen NACA-Serie.
0,90450850	0,01703285	Drofilkoptur, NACA0016
0,93301270	0,01214764	Profilkoordinaten (x, y) bezogen auf die
0,95677273	0,00794945	Profiltiefe t: x/t [-] und y/t [-]
0,97552826	0,00455108	
0,98907380	0,00204871	
0,99726095	0,00051616	
1,0000000	0,0000000	

Die nachfolgenden potentialtheoretischen Betrachtungen werden zu dem symmetrischen Standardprofil der vierstelligen NACA-Serie¹⁰, NACA0016 durchgeführt. Das Das Profil NACA0016 ist symmetrisch. Die beiden führenden Nullen geben an, dass es keine Profilwölbung hat. Die

¹⁰ Für die vierstellige NACA-Serie wurden 78 Profile im Windkanal getestet. Die vier Ordnungsziffern repräsentieren drei geometrische Werte des Profils (Profilwölbung, Wölbungsrücklage und maximale Profildicke), die für die Eigenschaften des Profils ausschlaggebend sind. Die Kontur der vierstelligen NACA-Serie ist geschlossen beschreibbar.

16 gibt an, dass das Verhältnis Profildicke zu Länge der Profilsehne 16 % beträgt. Folglich hat das Profil bei einer Länge von 100 % (Länge der Profilsehne) eine Profildicke von 16 %. Die Kontur der Standardprofile der vierstelligen NACA-Serie sind definiert:

Kontur:
$$y(x)_{NACA} = y_{MAX} \cdot (a_0 \cdot x^{1/2} + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + a_4 \cdot x^4)$$

(F10)

Ein erster quantitativer Aspekt bei der Beschreibung der Stall-Strömungsverhältnisse um eine Profilkontur liefert die Ermittlung der Druck- und Geschwindigkeitsverteilung auf der Hüllkontur v(x, δ_{99}) aus der Potentialtheorie mit Hilfe von Singularitätenverfahren oder konformen Abbildungen. Für unsere späteren Betrachtungen ist dabei von Bedeutung, dass die Separation (Ablösung) phänomenologisch mit der Druckverteilung auf der Profilkontur zusammenhängt. Eine Beschreibung Druckverteilung potentialtheoretischen erhalten wir der aus Betrachtungen, den Zusammenhang von Druck- und Geschwindigkeitsverteilung liefert die Bernoulli-Gleichung (in ihrer allgemeinen Form). Für die reibungsfreie Außenströmung gilt die Bernoulli-Gleichung in differentieller Form entlang einer Stromlinie auf der Hüllkontur (x7).

Bernoulli:	$v^{2}/(2g) + p/(\rho g) + z = const$	
differentielle Form: dimensionslos:	$\rho \cdot v \cdot dv/dx = -dp/dx$ $v \cdot dv/dx = -dp/dx$	(F11)
und angewandt auf die Hüllkontur:	$v(x, \delta_{99}) \cdot dv(x, \delta_{99}) / dx(\delta_{99}) = - dp(x, \delta_{99})$	₉) / dx(δ ₉₉)

Bei komplizierter Geometrie wird die Druckverteilung in der Regel experimentell ermittelt. Hierbei kommt im Rahmen der Grenzschichttheorie der glückliche Umstand zum Tragen, dass der Druck an der Wandkontur p(x,y) gleich dem Druck $p \pm (x, \delta_{99})$ am Außenrand der der Grenzschichtströmung ist. Aus der Druckverteilung Integration der Bernoulli-Gleichung lässt sich durch die Geschwindigkeitsverteilung $\pm v(x, \delta_{99})$ ermitteln. Das Diagramm (x8) zeigt den berechneten Geschwindigkeitsverlauf v/V[-] und Druckverlauf cp[-] über die Profilkontur NACA 0016 im auftriebslosen Fall mit dem Anstellwinkel (α =0°).

Die vierstellige NACA-Serie definiert das Profil durch:

- die 1. Ziffer, f
 ür die die maximale Profilw
 ölbung angegeben in Prozent, bezogen auf die Profilsehne (also: bezogen auf die L
 änge der Profilsehne).
- die 2. Ziffer, f
 ür die W
 ölbungsr
 ücklage in Zehnteln der der Profilsehne (also: in Zehnteln der L
 änge der Profilsehne).
- die 3. und 4. Ziffer bezeichnet die maximale <u>Profildicke</u> angegeben in Prozent, bezogen auf die Profilsehne.

Die Dickenrücklage der vierstelligen NACA-Profile liegt immer bei 30 %.

Diagramm (D12)

Geschwindigkeitsverlauf v/V[-] und Druck-verlauf cp[-] über die (obere) Kontur y/t[-] des Standardprofils NACA0016 im auftriebslosen Zustand: Anstellwinkel (α =0°).

In der Tabelle T13 sind die berechneten charakteristischen Integral- und Mittelwerte und die Verläufe u.A. der Grenzschichtdicken über die Profilkontur des NACA-Standardprofils NACA0016 im auftriebslosen Fall wiedergegeben. Diagramm D14 zeigt die Grenzschichtdicken über die Kontur.

((T	13)	
---	----	-----	--

a roj	Re		Mach		Λ Ca		Cw		Cm 0.25		
0,000	10000	0	[-] 0,000		[-] ∞	0,000	[-] 0,014 <i>1</i>	10	[-] -0,000)	
x/l [-]	y/I [-]	v/V [-]	δ_1 [-]	δ_2 [-]	δ_3 [-]	Reδ_2 [-]	C_f [-]	H_12 [-]	H_32 [-]	Zust. [-]	y1 [%]
1,0000	0,0000	0,1906	0,019201	0,008728	0,009909	166,3	0,0000	2,1998	1,1353	abgel.	0,0000
0,9973	0,0005	0,8749	0.019201	0.008728	0.009909	703.5	0.0000	2,1998	1,1353	turb.	0.0000
0,9755	0,0046	0,8649	0,009888	3 0,005094	0,008028	460,8	0,0019	1,9409	1,5758	turb.	0,0321
0,9568	0,0079	0,9052	0,007842	2 0,004422	0,007136	6414,3	0,0026	1,7735	1,6137	turb.	0,0279
0,9330	0,0121	0,9369	0,006685	5 0,003952	2 0,006463	380,7	0,0030	1,6915	1,6354	turb.	0,0259
0,9045	0,0170	0,9636	0,005866	0,003568	0,005884	352,1	0,0033	1,0441	1,6490	turb. turb	0,0247
0,8346	0,0223	1,0083	0,003230	0,0002951	0,004900	303,3	0,0036	1,6071	1,6604	turb.	0,0240
0,7939	0,0345	1,0281	0,004325	5 0,002687	0,004459	281,2	0,0036	1,6097	1,6596	turb.	0,0234
0,7500	0,0409	1,0468	0,003968	3 0,002438	0,004034	259,7	0,0036	1,6273	1,6542	turb.	0,0235
0,7034	0,0472	1,0651	0,003681		0,003634	239,5	0,0035	1,6646	1,6432	turb.	0,0240
0,0545	0,0555	1 1012	0.003365	5 0,00 1990	0,003244 0,002871	201.8	0,0032	1,7551	1,0239	turb.	0,0232
0,5523	0,0649	1,1196	0,003462	2 0,001630	0,002516	185,5	0,0018	2,1236	1,5431	turb.	0,0331
0,5000	0,0697	1,1381	0,005074	0,001482	0,002255	5 171,3	0,0007	3,4246	1,5223	lam.	0,0553
0,4477	0,0738	1,1567	0,004178	3 0,001339	0,002053	157,3	0,0013	3,1195	1,5332	lam.	0,0397
0,3960	0,0769	1,1751	0,003550	0,001204	0,001857	143,6	0,0018	2,9494	1,5426	lam.	0,0330
0,3455	0,0789	1,1930	0.002606	0,001073 0,000951	0 001482	130,0	0,0024	2,0312	1,5585	lam	0,0207
0,2500	0,0788	1,2244	0,002232	2 0,000837	0,001309	103,4	0,0038	2,6686	1,5650	lam.	0,0228
0,2061	0,0766	1,2363	0,001894	0,000726	0,001141	90,4	0,0048	2,6072	1,5710	lam.	0,0205
0,1654	0,0729	1,2444	0,001583	3 0,000620	0,000978	377,3	0,0060	2,5539	1,5769	lam.	0,0182
0,1284	0,0678	1,2470	0,001306	0,000521	0,000825	64,8 51.0	0,0077	2,5047	1,5828	lam.	0,0161
0,0955	0,0012	1,2417	0,001038	0,000424	0,000074	39.4	0,0103	2,4510	1,5695	lam	0,0139
0,0432	0,0444	1,1847	0,000578	0,000250	0,000403	8 27,8	0,0234	2,3093	1,6090	lam.	0,0092
0,0245	0,0345	1,1027	0,000402	2 0,000179	0,000290	16,7	0,0422	2,2459	1,6185	lam.	0,0069
0,0109	0,0237	0,9289	0,000303	3 0,000135	0,000219	7,7	0,0921	2,2352	1,6202	lam.	0,0047
0,0027	0,0121	0,5712	0,000303		0,000219	0,4	0,0001	2,2364	1,6200	lam.	0,1414
0,0000	-0.0121	0,0000	0,000001	0,000000	0,000001 0 000219	0,0	0,0000	2,2304	1,6200	lam	0,0000
0,0109	-0,0237	0,9289	0,000303	0,000135	0,000219	7,7	0,0921	2,2352	1,6202	lam.	0,0047
0,0245	-0,0345	1,1027	0,000402	2 0,000179	0,000290	16,7	0,0422	2,2459	1,6185	lam.	0,0069
0,0432	-0,0444	1,1847	0,000578	3 0,000250	0,000403	27,8	0,0234	2,3093	1,6090	lam.	0,0092
0,0670	-0,0534	1,2240	0,000794		0,000531	39,4	0,0148	2,3877	1,5979	lam.	0,0116
0,0955	-0,0012	1,2417	0.001306	0,000424 0 000521	0,000074	64 8	0,0103	2,4510	1,5695	lam	0,0139
0,1654	-0,0729	1,2444	0,001583	3 0,000620	0,000978	377,3	0,0060	2,5539	1,5769	lam.	0,0182
0,2061	-0,0766	1,2363	0,001894	0,000726	60,001141	90,4	0,0048	2,6072	1,5710	lam.	0,0205
0,2500	-0,0788	1,2244	0,002232	2 0,000837	0,001309	103,4	0,0038	2,6686	1,5650	lam.	0,0228
0,2966	-0,0795	1,2096	0,002606	0,000951	0,001482	110,5	0,0031	2,7402	1,5585	lam.	0,0255
0,3455	-0.0769	1,1930	0.003550	0.001204	0.001857	130,0	0.0024	2,0312	1,5426	lam.	0.0237
0,4477	-0,0738	1,1567	0,004178	3 0,001339	0,002053	157,3	0,0013	3,1195	1,5332	lam.	0,0397
0,5000	-0,0697	1,1381	0,005074	0,001482	0,002255	5 171,3	0,0007	3,4246	1,5223	lam.	0,0553
0,5523	-0,0649	1,1196	0,003462	2 0,001630	0,002516	6 185,5	0,0018	2,1236	1,5431	turb.	0,0331
0,6040	-0,0594	1,1012	0,003365	0,001803 0 001998	0,002871 0 003244	201,8	0,0026	1,8062	1,5923	turb.	0,0276
0,0040	-0.0472	1,0651	0.003681	0.002211	0.003634	239.5	0.0035	1.6646	1,6432	turb.	0.0240
0,7500	-0,0409	1,0468	0,003968	3 0,002438	0,004034	259,7	0,0036	1,6273	1,6542	turb.	0,0235
0,7939	-0,0345	1,0281	0,004325	0,002687	0,004459	281,2	0,0036	1,6097	1,6596	turb.	0,0234
0,8346	-0,0284	1,0083	0,004743	0,002951	0,004900	303,3	0,0036	1,6071	1,6604	turb.	0,0236
0,8716	-0,0225	0,9871	0,005236	0,003237 0,003569	0,005363	0 3∠0,4 . 352 1	0,0035	1,01/8	1,6570	iurb. turb	0,0240
0.9330	-0.0121	0.9369	0.006685	5 0.003952	2 0.006463	380.7	0.0030	1.6915	1.6354	turb.	0.0259
0,9568	-0,0079	0,9052	0,007842	2 0,004422	0,007136	414,3	0,0026	1,7735	1,6137	turb.	0,0279
0,9755	-0,0046	0,8649	0,009888	3 0,005094	0,008028	460,8	0,0019	1,9409	1,5758	turb.	0,0321
0,9891	-0,0020	0,8060	0,018777	0,008657	0,009866	697,8	0,0000	2,1690	1,1397	turb.	0,0000
0,9973 1,0000	-0,0005 0,0000	0,6749 0,1906	0,018777	0,008657	0,009866	584,3 165,0	0,0000	2,1690	1,1397	abgel. abgel.	0,0000

Figur D14: NACA0016, Grenzschichtdicken. Re: 10E6, a=0°.

Querkraft generierendes, symmetrisches Profil und Grenzen der potentialtheoretischen Untersuchungen.

Beim Manövrieren oder in Fahrt bilden symmetrisch profilierte Kraft- und Arbeitstragflächen dann ein Querkraft generierendes System, wenn die Anströmung nichtaxial erfolgt. Dabei ist die Variation des Auftriebs (Querkraft, Lift) eines symmetrischen Profils über den Anstellwinkel selbst symmetrisch. Den entscheidenden aber wahrscheinlich nicht einzigen Einfluss auf das Stallverhalten symmetrisch profilierter Kraftund Arbeitstragflächen nimmt der Anstellwinkel des Profils in der Strömung. Im Diagramm (D16) ist das Auftriebsgebaren des Standardprofils NACA0016 und der maximale Anstellwinkels α_{STALL} , bei dem gerade ein Strömungsabriss auftritt, leicht zu identifizieren. Diagramm (D17) zeigt die Auftriebs- Widderstandspolare des Profils. Die Tabelle (T15) listet neben den Integralwerten der Auftriebs- und Widerstandsbeiwertes den Transitionspunkt T und den Separationspunkt S in Abhängigkeit vom Anstellwinkel für die Ober- und die Unterseite der Profilkontur dar.

Die Tabelle (T15) listet neben den Integralwerten der Auftriebs- und Widerstandsbeiwertes den Transitionspunkt T und den Separationspunkt S in Abhängigkeit vom Anstellwinkel für die Oberseite und der Unterseite der Profilkontur dar.

Tabelle (T15) und das Diagramm (D18) sollen nun einen tieferen Einblick und Arbeitstragflächenprofils Stallverhalten des Kraftin das ermöglichen. Über den Anstellwinkel aufgetragen ist in der Figur D18 die Kurve der Transitionspunkte und der Separation aufgetragen. Für das Profil NACA0016 zeigt sich bei einer Geschwindigkeit von Re=10E6 ein turbulenter Grenzschicht. Ledialich ausgeprägter Bereich für Anstellwinkel bis etwa 10° existiert ein Bereich laminarer Grenzschicht, der auch im Fall der auftriebslosen Anströmung nicht an eine Profiltiefe x/t von 20% heranreicht.

Das Diagramm weist eventuell auf eine Korrelation des Stall-Phänomens mit der Lauflänge über der Profilkontur bei der eben noch keine Separation auftritt hin. Stall wird (phänomenoligisch) spürbar, wenn der Auftrieb am Profil "einbricht". Mit der Variation des Anstellwinkels haben wir zunächst einmal "eine" Möglichkeit, das Auftriebsgebaren einer Querkraft generierenden Tragfläche zu untersuchen. Hilfreich ist hier die in das Diagram (D18) aufgenommene Kurve des Auftriebsbeiwertes. Das Maximum des Auftriebsbeiwertes von (bescheidenen) c_A= 1,4 tritt gerade dort auf, wo der Separationspunkt die Marke der 50%-Profiltiefe passiert. Der Anstellwinkel beträgt für diesen Fall etwa a=17°. Um zu ermitteln, ob der Separationspunkt mit der Anströmgeschwindigkeit variiert werden nun die Transions- und Separationkurven für drei verschiedene Reynoldszahlen berechnet.

Beim Manövrieren können die Anströmgeschwindigkeiten bei Leit- und Steuertragflächen von Seefahrzeugen sehr klein werden. So sind hier Reynoldszahlen Re<50000 durchaus interessant. Das Diagram (D19) zeigt Transions- und Separationkurven des Profils, T und S bei Re: 10E5 und das Diagram (D20) zeigt Transions- und Separationkurven des Profils bei Re: 10E4. Bei sehr kleinen Geschwindigkeiten ist die laminare Anlaufstrecke erwartungsgemäß (relativ) lang; sie reicht hier fast bis in die Hälfte der Profiltiefe. Der turbulente Bereich ist vergleichsweise kurz: es kommt rasch zur Separation aus der turbulenten Grenzschicht. Das Minimum der Separationskurve liegt im anströmungsfreien Fall bei 80% der Profiltiefe. Die berechnete Tragfähigkeit des Profils liegt aber dennoch bei etwa a=17°. Hier arbeitet der Tragflügel schon lange im voll abgelösten Zustand. Dieser Exkurs in die kleinen Revnoldszahlen stellt die anfangs gehegte Hoffnung auf eine von Separationskurven und Transition getragene Stallvoraussage bei kleinen Geschwindigkeiten mit der potentialtheoretischen Methode deutlich infrage.

Zusammenfassung. Der Untersuchung des NACA-Standardprofils NACA0016 hinsichtlich der Transitions- und Separationseigenschaften potentialtheroretischen Anströmrichtung mit unter Variation der Methoden werden generelle Erläuterungen zu laminaren und turbulenten Grenzschichten vorangestellt. Es sollen in dieser Arbeit Methoden bereitgestellt werden, die erste Aussagen über das Stallverhalten von Profilen für Leit- und Steuertragflächen von Seefahrzeugen liefern. Die Methoden werden an einem Standardprofil der vierstelligen NACA-Reihe erprobt und sollen fürderhin geeignet sein, synthetische Profile für Kraftund Arbeitstragflächen in unterschiedlichen Medien zu untersuchen. Es zeigt sich, dass die Aussagekraft von Strömungssimulationen mit der Potentialtheorie dort beschränkt ist, wo eine Korrelation der Transitionsund Separationseigenschaften auf einer Tragflächen-Profiloberfläche mit phänomenologischen Stallkriterien, etwa dem "Einbruch" der Quer- oder Auftriebskraft am Tragflügel hergestellt werden soll. Integral- und Mittelwerte stellen aber äußerst hilfreiche erste Informationen bei der Entwicklung synthetischer Profile für Kraft- und Arbeitstragflächen von Leit- und Steuertragflächen von Seefahrzeugen dar.

α	Ca	Cw	Cm 0.25	T.U.	T.L.	S.U.	S.L.	GZ	N.P.	D.P.
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-30,0	-1,182	0,45642	0,178	0,979	0,006	0,990	0,014	-2,590	-0,014	0,401
-25,0	-1,277	0,30063	0,153	0,971	0,007	0,986	0,019	-4,247	-0,540	0,370
-20,0	-1,248	0,18583	0,126	0,957	0,009	0,982	0,025	-6,718	0,497	0,351
-15,0	-1,050	0,11297	0,097	0,921	0,015	0,982	0,043	-9,293	0,481	0,342
-10,0	-0,942	0,04545	0,055	0,846	0,030	0,983	0,652	-20,72	90,429	0,308
-5,0	-0,585	0,02475	0,014	0,660	0,153	0,989	0,950	-23,62	60,308	0,273
0,0	0,000	0,02083	-0,000	0,392	0,392	0,982	0,983	0,000	0,273	0,250
5,0	0,585	0,02476	-0,014	0,153	0,660	0,950	0,989	23,618	0,309	0,273
10,0	0,941	0,04554	-0,055	0,030	0,846	0,651	0,983	20,664	0,429	0,309
15,0	1,050	0,11318	-0,097	0,015	0,921	0,043	0,982	9,278	0,479	0,342
20,0	1,249	0,18401	-0,126	0,009	0,957	0,024	0,982	6,787	0,497	0,351
25,0	1,277	0,29707	-0,153	0,006	0,971	0,019	0,986	4,299	-0,535	0,370
30,0	1,182	0,44758	-0,178	0,005	0,979	0,014	0,990	2,641	-0,013	0,401

Tabelle (T15) Integralwerte der Profilkontur NACA0016

Figur D16 Auftrieb und Widerstand. Integralwerte der Profilkontur NACA0016

Figur D17 Polare: Auftrieb und Widerstand der Profilkontur NACA0016

Figur D18: Profilkontur NACA0016, Re: 10E6, Medium: Wasser. Transitionspunkt und Separationspunkt über Variation des Anstallwinkels.

Figur D19: Profilkontur NACA0016, Re: 10E5, Medium: Wasser. Transitionspunkt und Separationspunkt über Variation des Anstallwinkels.

Figur D20: Profilkontur NACA0016, Re: 10E4, Medium: Wasser. Transitionspunkt und Separationspunkt über Variation des Anstallwinkels.

NACA0016 Referenzmessung

Oberfläche NACA-Standard

x/t	y/t
1,0000000	0,0000000
0,99726095	0,00051616
0,98907380	0,00204871
0,97552826	0,00455108
0,95677273	0,00794945
0,93301270	0,01214764
0,90450850	0,01703285
0,87157241	0,02248112
0,83456530	0,02836171
0,79389263	0,03453981
0,75000000	0,04087742
0,70336832	0,04723245
0,65450850	0,05345697
0,60395585	0,05939522
0,55226423	0,06488268
0,50000000	0,06974700
0,44773577	0,07381149
0,39604415	0,07690138
0,34549150	0,07885253
0,29663168	0,07952160
0,25000000	0,07879656
0,20610737	0,07660591
0,16543470	0,07292505
0,12842759	0,06777865
0,09549150	0,06123815
0,06698730	0,05341439
0,04322727	0,04444574
0,02447174	0,03448331
0,01092620	0,02367460
0,00273905	0,01214803
0,0000000	0,0000000
0,00273905	-0,01214803
0,01092620	-0,02367460
0,02447174	-0,03448330
0,04322727	-0,04444574
0,06698730	-0,05341439
0,09549150	-0,06123815
0,12842759	-0,06777865
0,16543470	-0,07292505
0,20610737	-0,07660591
0,25000000	-0,07879656
0,29663168	-0,07952160
0,34549150	-0,07885253
0,39604415	-0,07690138
0,44773577	-0,07381149
0,50000000	-0,06974700
0,55226423	-0,06488268
0,60395585	-0,05939522
0,65450850	-0,05345697
0,70336832	-0,04723245
0,75000000	-0,04087742
0,79389263	-0,03453981
0,83456530	-0,02836171
0,8/15/241	-0,02248112
0,90450850	-0,01/03285
0,93301270	-0,01214/64
0,95677273	-0,00794945
0,97552826	-0,00455108
0,98907380	-0,00204871
0,99726095	-0,00051616
1,0000000	0,00000000

α	Re	Mach	Λ	Са	Cw	Cm 0.25					
[°]	[-]	[-]	[-]	[-]	[-]	[-]					
0,000	100000	0,000	∞	0,000	0,02082	-0,000					
v /l	v/l	\sqrt{N}	δ 1	δ 2	δ 3	Β ρδ 2	C f	H 12	Н 32	Zust	v1
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	2031. [-]	[%]
1,0000	0,0000	0,1906	0,020954	i 0,009195	50,010956	5 175,2	0,0000	2,2789	1,1916	abgel.	0,0000
0,9973	0,0005	0,6749	0,020954	0,009195	50,010956	620,6	0,0000	2,2789	1,1916	abgel.	0,0000
0,9891	0,0020	0,8060	0,020954	0,009195	50,010956	5741,1	0,0000	2,2789	1,1916	turb.	0,0000
0,9755	0,0046	0,8649	0,009986	6 0,005377	0,008569	9 486,3	0,0022	1,8573	1,5937	turb.	0,0303
0,9568	0,0079	0,9052	0,008012	2 0,004678	3 0,007622	2 438,2	0,0028	1,7128	1,6294	turb.	0,0268
0,9330	0,0121	0,9369	0,006859	0,004186	60,006910	0 403,2	0,0032	1,6384	1,6507	turb.	0,0250
0,9045	0,0170	0,9636	0,006025	5 0,003784	0,006299	373,3	0,0035	1,5925	1,6649	turb.	0,0239
0,8716	0,0225	0,9871	0,005371	0,003435	0,005752	2 346,4	0,0038	1,5635	1,6744	turb.	0,0231
0,8346	0,0284	1,0083	0,004846	0,003134		0 322,1	0,0039	1,5463	1,6803	turb.	0,0226
0,7939	0,0345	1,0201	0,004307	0,002004	0,004004	290,7	0,0041	1,0072	1,0004	turb.	0,0222
0,7500	0,0409	1,0400	0,003974	0,002300	0,004330	2753.6	0,0041	1,5555	1,0040	turb.	0,0220
0,7004	0.0535	1,0001	0.003281	0,002042	0,0000000	2317	0,0042	1,5589	1,0010	turb.	0.0220
0.6040	0.0594	1.1012	0.002998	3 0.001881	0.003131	210.5	0.0040	1,5942	1.6645	turb.	0.0224
0,5523	0,0649	1,1196	0,002784	0,001672	2 0,002747	190,3	0,0036	1,6651	1,6431	turb.	0,0234
0,5000	0,0697	1,1381	0,002695	50,001491	0,002394	172,4	0,0030	1,8081	1,6058	turb.	0,0259
0,4477	0,0738	1,1567	0,002851	0,001339	0,002064	157,3	0,0019	2,1302	1,5422	turb.	0,0326
0,3960	0,0769	1,1751	0,003550	0,001204	0,001857	′ 143,6	0,0018	2,9494	1,5426	lam.	0,0330
0,3455	0,0789	1,1930	0,003043	3 0,001075	5 0,001667	7 130,0	0,0024	2,8312	1,5510	lam.	0,0287
0,2966	0,0795	1,2096	0,002606	6 0,000951	0,001482	2 116,5	0,0031	2,7402	1,5585	lam.	0,0255
0,2500	0,0788	1,2244	0,002232	2 0,000837	0,001309	9 103,4	0,0038	2,6686	1,5650	lam.	0,0228
0,2061	0,0766	1,2363	0,001894	0,000726	0,001141	90,4	0,0048	2,6072	1,5/10	lam.	0,0205
0,1004	0,0729	1,2444	0,001306	0,000020 0 000521	0,000970	577,5	0,0060	2,5559	1,5709	lam	0,0161
0,1204	0,0078	1,2470	0,001300	0,000321	0,000820	1510	0,0077	2,3047	1,5020	lam	0,0101
0,0000	0.0534	1 2240	0.000794	0,000424	0,000073	39.4	0.0148	2,3877	1,5055	lam	0.0116
0.0432	0.0444	1.1847	0.000578	3 0.000250	0.000403	3 27.8	0.0234	2.3093	1,6090	lam.	0.0092
0,0245	0,0345	1,1027	0,000402	2 0,000179	0,000290	16,7	0,0422	2,2459	1,6185	lam.	0,0069
0,0109	0,0237	0,9289	0,000303	3 0,000135	50,000219	7,7	0,0921	2,2352	1,6202	lam.	0,0047
0,0027	0,0121	0,5712	0,000303	3 0,000135	50,000219	0,4	0,0001	2,2364	1,6200	lam.	0,1414
0,0000	0,0000	0,0000	0,000001	0,000000	0,000001	0,0	0,0000	2,2364	1,6200	lam.	0,0000
0,0027	-0,0121	0,5712	0,000303	3 0,000135	50,000219	0,4	0,0001	2,2364	1,6200	lam.	0,1414
0,0109	-0,0237	0,9289	0,000303	3 0,000135	50,000219	7,7	0,0921	2,2352	1,6202	lam.	0,0047
0,0245	-0,0345	1,1027	0,000402		0,000290) 16,7	0,0422	2,2459	1,6185	lam.	0,0069
0,0432	-0,0444	1,1847	0,000578	0,000250		20.4	0,0234	2,3093	1,6090	lam.	0,0092
0,0070	-0,0534	1,2240	0,000794	0,000333	0,000531	59,4	0,0140	2,3077	1,5979	lam	0,0110
0,0000	-0.0678	1 2470	0.001306	30,000424	0,000075	64.8	0,0100	2,4010	1,5055	lam	0,0161
0.1654	-0.0729	1.2444	0.001583	3 0.000620	0.000978	377.3	0.0060	2.5539	1.5769	lam.	0.0182
0,2061	-0,0766	1,2363	0,001894	0,000726	60,001141	90,4	0,0048	2,6072	1,5710	lam.	0,0205
0,2500	-0,0788	1,2244	0,002232	2 0,000837	0,001309	103,4	0,0038	2,6686	1,5650	lam.	0,0228
0,2966	-0,0795	1,2096	0,002606	6 0,000951	0,001482	2 116,5	0,0031	2,7402	1,5585	lam.	0,0255
0,3455	-0,0789	1,1930	0,003043	3 0,001075	5 0,001667	7 130,0	0,0024	2,8312	1,5510	lam.	0,0287
0,3960	-0,0769	1,1751	0,003550	0,001204	0,001857	143,6	0,0018	2,9494	1,5426	lam.	0,0330
0,4477	-0,0738	1,1567	0,002851		0,002064	157,3	0,0019	2,1302	1,5422	turb.	0,0326
0,5000	-0,0697	1,1381	0,002695	0,001491	0,002394	100 3	0,0030	1,8081	1,0008	turb.	0,0259
0,5525	-0,0049	1,1190	0,002704	0,001072 0 001881	0,002747	210.5	0,0030	1 50/2	1,0451	turb.	0,0234
0,0040	-0.0535	1 0831	0.002000	0,001001	5 0 003527	231.7	0,0040	1,5589	1,0040	turb.	0,0224
0.7034	-0.0472	1.0651	0.003610	0.002342	2 0.003938	253.6	0.0042	1,5417	1,6819	turb.	0.0219
0,7500	-0,0409	1,0468	0,003974	0,002588	0,004358	3 275,6	0,0041	1,5355	1,6840	turb.	0,0220
0,7939	-0,0345	1,0281	0,004387	0,002854	0,004804	298,7	0,0041	1,5372	1,6834	turb.	0,0222
0,8346	-0,0284	1,0083	0,004846	6 0,003134	0,005266	5 322,1	0,0039	1,5463	1,6803	turb.	0,0226
0,8716	-0,0225	0,9871	0,005371	0,003435	5 0,005752	2 346,4	0,0038	1,5635	1,6744	turb.	0,0231
0,9045	-0,0170	0,9636	0,006025	5 0,003784	0,006299	373,3	0,0035	1,5925	1,6649	turb.	0,0239
0,9330	-0,0121	0,9369	0,006859	0,004186	5 0,006910	403,2	0,0032	1,6384	1,6507	turb.	0,0250
0,9568	-0,0079	0,9052	0,008012	20,004678	5 U,UU/622	438,2	0,0028	1,7128	1,6294	turb.	0,0268
0,9705	-0,0046	0,0049	0,009986	0,0003//	0,008565	1400,J	0,0022	1,00/3	1,0937	turb.	0,0303
0,9091	-0,0020	0,0000	0,021420	0,009107	0,011008	86187	0,0000	2,3307	1,2000	ahael	0,0000
1.0000	0.0000	0.1906	0.021420	0.009167	0.011008	3 174 7	0.0000	2,3367	1,2008	abgel.	0.0000
.,	2,0000	2,	2,021120	2,000.01	2,2.1000	, .	2,0000	_,	.,_500	~~ 90	2,2000

α	Re	Mach	Λ	Са	Cw	Cm 0.25					
[°]	[-]	[-]	[-]	[-]	[-]	[-]					
5,000	100000	0,000	8	0,585	0,02476	-0,014					
x/l	y/l	v/V	ð_1	δ_2	δ_3	Reð_2	C_f	H_12	H_32	Zust.	y1
[-]	[-]	[-]	[-]		[-]		[-]	[-]	[-]	[-]	[%]
1,0000	0,0000	0,1898	0,024585		0,012811	1295,4	0,0000	1,5799	0,8233	abgel.	0,0000
0,9973	0,0005	0,6761	0,024585		0,012811	1052,0	0,0000	1,5799	0,8233	abgel.	0,0000
0,9891	0,0020	0,8096	0,024585		0,012811	1259,8	0,0000	1,5799	0,8233	abgel.	0,0000
0,9755	0,0046	0,8722	0,024585		0,012811	1357,3	0,0000	1,5799	0,8233	abgei.	0,0000
0,9000	0,0079	0,9100	0,024000	0,01000	0,012011	1 1420,3	0,0000	1,5799	0,0200	turb.	0,0000
0,9330	0,0121	0,9520	0,013040			F 007,7	0,0010	2,0090	1,5020	turb.	0,0303
0,9045	0,0170	0,9044	0,01110	7 0 005410	0,009002	2010,0	0,0021	1,0007	1,5947	turb.	0,0311
0,0710	0,0223	1 0300	0,009527	0,000410	0,000740	2 5 2 1 1	0,0024	1,7009	1,0170	turb.	0,0200
0,0040	0,0204	1,0555	0,00032	0,00403- 0 004430	0,007330	8 4 8 3 1	0,0027	1,7001	1,0000	turb.	0,0271
0,7500	0,0040	1,0007	0.006500	0,004400) 446 5	0,0000	1,0000	1,0400	turb.	0,0250
0,7034	0,0400	1,0000	0.005783	3 0 003611		4122	0,0032	1,0240	1,0545	turb.	0.0243
0 6545	0.0535	1 1419	0.005130	0 003239	0.005403	3784	0.0036	1,5836	1,6678	turb.	0.0237
0,6040	0.0594	1 1685	0.004536	0 002888	0 004830	345.4	0.0037	1,5703	1,6722	turb.	0.0232
0.5523	0.0649	1,1962	0.003986	0.002553	0.004277	7 312.8	0.0039	1,5612	1.6752	turb.	0.0228
0.5000	0.0697	1.2252	0.003494	10.002244	0.003763	3 281.7	0.0040	1.5567	1.6767	turb.	0.0224
0.4477	0.0738	1.2557	0.003043	3 0.001953	0.003274	251.4	0.0041	1.5582	1.6763	turb.	0.0221
0.3960	0.0769	1.2875	0.002642	2 0.001684	0.002817	222.4	0.0041	1,5688	1.6727	turb.	0.0220
0,3455	0,0789	1,3208	0,002297	7 0,001440	0,002396	3 195,1	0,0041	1,5957	1,6640	turb.	0,0222
0,2966	0,0795	1,3552	0,00202	0,001220	0,002008	3 169,7	0,0038	1,6561	1,6457	turb.	0,0229
0,2500	0,0788	1,3908	0,001850	0,001036	0,001669	9 147,8	0,0032	1,7860	1,6111	turb.	0,0250
0,2061	0,0766	1,4275	0,001847	7 0,000883	0,001368	3 129,3	0,0021	2,0920	1,5487	turb.	0,0310
0,1654	0,0729	1,4652	0,002435	5 0,000749	0,001145	5 112,7	0,0014	3,2497	1,5277	lam.	0,0377
0,1284	0,0678	1,5043	0,001891	0,000623	0,000958	3 96,3	0,0024	3,0355	1,5374	lam.	0,0289
0,0955	0,0612	1,5450	0,001454	10,000506	6 0,000782	2 80,2	0,0037	2,8760	1,5475	lam.	0,0233
0,0670	0,0534	1,5870	0,001064	10,000392	2 0,000613	3 63,8	0,0059	2,7114	1,5610	lam.	0,0185
0,0432	0,0444	1,6274	0,000720	0,000286	60,000452	2 47,3	0,0103	2,5204	1,5810	lam.	0,0139
0,0245	0,0345	1,6546	0,000468	3 0,000201	0,000322	2 32,8	0,0192	2,3310	1,6059	lam.	0,0102
0,0109	0,0237	1,6263	0,000321	1 0,000143	3 0,000232	2 20,4	0,0349	2,2418	1,6192	lam.	0,0076
0,0027	0,0121	1,4257	0,000289	0,000129	0,000210	0 12,0	0,0599	2,2294	1,6211	lam.	0,0058
0,0000	0,0000	0,9263	0,000845	5 0,000364	0,000584	10,5	0,0607	2,3226	1,6069	lam.	0,0057
0,0027	-0,0121	0,2877	0,000102	2 0,000046	5 0,000074	1,0	0,0001	2,2364	1,6200	lam.	0,1414
0,0109	-0,0237	0,2245	0,00000		0,000001	0,0	0,0000	2,2364	1,6200	lam.	0,0000
0,0245	-0,0345	0,5425	0,000100	0,000045	0,000073	31,1	0,0001	2,2364	1,6200	lam.	0,1414
0,0432	-0,0444	0,7329	0,000476	0,000213	30,000344	11,5	0,0615	2,2394	1,6195	lam.	0,0057
0,0670	-0,0534	0,8517	0,000654			21,1	0,0325	2,2673	1,6152	lam.	0,0079
0,0955	-0,0012	0,9289	0,000848		0,000592	2 31,4	0,0207	2,3072	1,6092	lam.	0,0098
0,1204	-0,0070	1 0140	0,00100			042,1	0,0147	2,3444	1,0039	lam	0,0117
0,1004	-0,0729	1,0140	0,00120	0,000000	0,000002	2628	0,0111	2,3004	1,5909	lanı.	0,0154
0,2001	-0,0700	1,0330	0,001318	0,000028	0,001000 0 001140	003,0 07/0	0,0000	2,4140	1,5945	lanı.	0,0151
0,2000	-0,0700	1,0400	0,00177	7 0 000720	0,001148	0 85 0	0,0072	2,4456	1,5050	lam	0,0107
0,2300	-0.0789	1,0540	0.002325	5 0 000921	0.001256	3972	0,0050	2,4000	1,5052	lam	0.0200
0,3960	-0 0769	1,0001	0.002636	S 0 001028	0,001400	108.5	0.0042	2,6240	1,0000	lam	0.0218
0 4477	-0 0738	1 0490	0.002964	10 001135	5 0 001782	21196	0.0036	2 6122	1,5705	lam.	0.0236
0,5000	-0.0697	1 0423	0.003323	3 0 001247	0 001951	130.8	0,0030	2 6654	1 5654	lam	0.0256
0.5523	-0.0649	1.0344	0.003700	0.001359	0.002120) 141.6	0.0026	2,7227	1.5601	lam.	0.0277
0.6040	-0.0594	1.0256	0.004102	2 0.001472	2 0.002288	3 152.2	0.0022	2.7875	1.5545	lam.	0.0301
0,6545	-0,0535	1,0161	0,004554	10,001588	0,002459	9 162,9	0,0018	2,8677	1,5482	lam.	0,0331
0,7034	-0,0472	1,0058	0,00507	1 0,001705	0,002628	3 173,3	0,0015	2,9734	1,5411	lam.	0,0370
0,7500	-0,0409	0,9948	0,003458	3 0,001830	0,002905	5 184,1	0,0026	1,8897	1,5873	turb.	0,0278
0,7939	-0,0345	0,9826	0,003449	0,001981	0,003213	3 197,0	0,0032	1,7414	1,6223	turb.	0,0250
0,8346	-0,0284	0,9690	0,003583	3 0,002150	0,003531	211,2	0,0036	1,6665	1,6427	turb.	0,0237
0,8716	-0,0225	0,9535	0,003813	3 0,002339	0,003866	6 226,6	0,0037	1,6307	1,6532	turb.	0,0232
0,9045	-0,0170	0,9355	0,004129	0,002548	3 0,004219	9 242,9	0,0037	1,6206	1,6562	turb.	0,0232
0,9330	-0,0121	0,9138	0,004569	9 0,002798	3 0,004624	261,7	0,0036	1,6329	1,6524	turb.	0,0237
0,9568	-0,0079	0,8869	0,005169	0,003094	0,005077	282,7	0,0033	1,6709	1,6412	turb.	0,0246
0,9755	-0,0046	0,8511	0,006162	2 0,003506	0,005672	2 310,7	0,0028	1,7575	1,6177	turb.	0,0267
0,9891	-0,0020	0,7963	0,014951	0,005904	0,007855	5470,1	0,0000	2,5324	1,3304	turb.	0,0000
0,9973	-0,0005	0,6687	0,014951	0,005904	0,007855	5 394,8	0,0000	2,5324	1,3304	abgel.	0,0000
1,0000	0,0000	0,1898	0,014951	1 0,005904	0,007855	5 112,1	0,0000	2,5324	1,3304	abgel.	0,0000

Profil NACA0016 Geschwindigkeitsverteilung Medium Wasser, Re:1E6 Anstellwinkel: α=5°

α	Re	Mach	٨	Са	Cw	Cm 0.25					
[[°]] 10.000	[-] 100000	[-] 0.000	[-] ∞	[-] 0.941	[-] 0.04554	[-] -0.055					
10,000	100000	0,000		0,041	0,04004	0,000					
x/l	y/l	v/V	δ_1	δ_2	δ_3	Reð_2	C_f	H_12	H_32	Zust.	y1
[-]	[-]	[-]	[-]			[-]	[-]	[-]	[-]	[-]	[%]
1,0000	0,0000	0,1077	0,016751	0,020420	0,000723	0 000,4 0 1010 0	0,0000	0,5094	0,3069	abgel.	0,0000
0,9373	0,0000	0,0720	0.016751	0,020420	0,000723	2293.6	0,0000	0,5894	0,3069	abgel. abgel	0,0000
0.9755	0.0046	0.8729	0.016751	0.028420	0.008723	3 2480.7	0.0000	0.5894	0.3069	abgel.	0.0000
0,9568	0,0079	0,9211	0,016751	0,028420	0,008723	3 2617,7	0,0000	0,5894	0,3069	abgel.	0,0000
0,9330	0,0121	0,9615	0,016751	0,028420	0,008723	3 2732,6	0,0000	0,5894	0,3069	abgel.	0,0000
0,9045	0,0170	0,9977	0,016751	0,028420	0,008723	8 2835,5	0,0000	0,5894	0,3069	abgel.	0,0000
0,8716	0,0225	1,0314	0,016751	0,028420	0,008723	3 2931,3	0,0000	0,5894	0,3069	abgel.	0,0000
0,8346	0,0284	1,0636	0,016751		0,008723	3022,9	0,0000	0,5894	0,3069	abgel.	0,0000
0,7939	0,0345	1,0952	0,010751		0,008723	22022	0,0000	0,5894	0,3069	abgel.	0,0000
0,7500	0,0409	1,1207	0.016751	0,020420	0,000720	3202,2	0,0000	0,5894	0,3009	abyei. ahael	0,0000
0,7004	0,0472	1,1000	0.016751	0,020420	0,000723	3387.9	0,0000	0,5894	0,3069	turb	0,0000
0,6040	0,0594	1,2269	0,010121	0,004624	0.007086	584.2	0,0013	2,1886	1,5322	turb.	0,0397
0,5523	0,0649	1,2637	0,008255	5 0,004042	2 0,006292	2 526,5	0,0016	2,0426	1,5567	turb.	0,0352
0,5000	0,0697	1,3030	0,006821	0,003512	2 0,005534	472,4	0,0019	1,9422	1,5759	turb.	0,0323
0,4477	0,0738	1,3451	0,005697	0,003042	2 0,004839	422,8	0,0022	1,8728	1,5906	turb.	0,0302
0,3960	0,0769	1,3901	0,004761	0,002612	2 0,004184	375,6	0,0024	1,8227	1,6020	turb.	0,0287
0,3455	0,0789	1,4385	0,003977	0,002224	1 0,00358L	2002	0,0026	1,7886	1,6101	turb.	0,0275
0,2900	0,0795	1,4900	0,003307	0,001070	0,003021	209,3	0,0020	1,7001	1,0152	turb.	0,0207
0,2000	0,0766	1,6078	0.002740	5 0 001282	0,002025	200,5	0,0020	1 7678	1,0170	turb.	0.0257
0,1654	0,0729	1,6750	0,001846	6 0,001030	0,001657	180,2	0,0030	1,7925	1,6093	turb.	0,0257
0,1284	0,0678	1,7503	0,001498	3 0,000814	0,001301	149,4	0,0029	1,8402	1,5980	turb.	0,0261
0,0955	0,0612	1,8366	0,001197	0,000620	0,000978	3 120,1	0,0027	1,9316	1,5783	turb.	0,0273
0,0670	0,0534	1,9379	0,000968	3 0,000459	0,000710	94,5	0,0022	2,1079	1,5457	turb.	0,0303
0,0432	0,0444	2,0578	0,001065	0,000327	0,000499	971,7	0,0022	3,2581	1,5269	lam.	0,0302
0,0245	0,0345	2,1930	0,000540	0,000210 0 000147	0,000340 0 000237	0 00,4 7 3 3 3	0,0097	2,3109	1,0014	lanı.	0,0143
0.0027	0.0121	2,2694	0.000275	5 0.000124	10.000200) 22.8	0.0318	2.2293	1.6211	lam.	0.0079
0,0000	0,0000	1,8456	0,000301	0,000135	5 0,000218	3 15,6	0,0462	2,2324	1,6206	lam.	0,0066
0,0027	-0,0121	1,1443	0,000398	3 0,000178	3 0,000289	8,6	0,0831	2,2352	1,6202	lam.	0,0049
0,0109	-0,0237	0,4816	0,000253	3 0,000113	3 0,000183	30,4	0,0001	2,2364	1,6200	lam.	0,1414
0,0245	-0,0345	0,0218	0,000001		0,000001	0,0	0,0000	2,2364	1,6200	lam.	0,0000
0,0432	-0,0444	0,2756	0,000287			50,4 N 7 2	0,0001	2,2364	1,6200	lam.	0,1414
0,0070	-0,0534	0,4729	0,000593	0,000200	5 0,000430	7,3 7154	0,0975	2,2352	1,0202	lam	0,0045
0.1284	-0.0678	0,7058	0.000913	3 0.000403	3 0.000650) 24.6	0.0278	2.2673	1.6152	lam.	0.0085
0,1654	-0,0729	0,7760	0,001104	0,000481	0,000775	5 34,0	0,0194	2,2949	1,6110	lam.	0,0102
0,2061	-0,0766	0,8273	0,001305	5 0,000562	2 0,000903	3 43,7	0,0146	2,3216	1,6071	lam.	0,0117
0,2500	-0,0788	0,8648	0,001517	0,000646	60,001036	53,5	0,0115	2,3478	1,6034	lam.	0,0132
0,2966	-0,0795	0,8919	0,001/3/	0,000732	20,001170	063,3	0,0094	2,3743	1,5997	lam.	0,0146
0,3455	-0,0789	0,9112	0,001972	2 0,000822	2 0,001311	13,3	0,0078	2,4000	1,5962	lam	0,0100
0,3300	-0.0738	0,9244	0.002212	3 0 001004	0,001432	5 92 8	0,0007	2,4203	1,5327	lam	0.0186
0,5000	-0,0697	0,9386	0,002723	3 0,001098	3 0,001742	2 102,5	0,0050	2,4788	1,5860	lam.	0,0199
0,5523	-0,0649	0,9414	0,002983	3 0,001191	0,001885	5 111,8	0,0044	2,5049	1,5828	lam.	0,0212
0,6040	-0,0594	0,9421	0,003250	0,001284	0,002028	3 120,8	0,0040	2,5316	1,5796	lam.	0,0225
0,6545	-0,0535	0,9413	0,003524	0,001377	7 0,002170) 129,7	0,0036	2,5596	1,5762	lam.	0,0237
0,7034	-0,0472	0,9390	0,003803		30,002308	3 138,2	0,0032	2,5906	1,5726	lam.	0,0250
0,7500	-0,0409	0,9351	0,004103	0,001000	0,002444	140,3	0,0026	2,0333	1,0004	lanı.	0,0200
0,7333	-0,0343	0,9297	0.004849	0,001032	0,002303	3 162 7	0,0023	2,0035	1,5051	lam	0,0203
0,8716	-0.0225	0,9127	0.005397	0.001856	0.002868	3 171,2	0,0016	2,9081	1,5453	lam.	0,0349
0,9045	-0,0170	0,9002	0,003969	0,001980	0,003096	5 180,7	0,0022	2,0052	1,5640	turb.	0,0302
0,9330	-0,0121	0,8838	0,004081	0,002131	0,003371	191,8	0,0025	1,9148	1,5818	turb.	0,0285
0,9568	-0,0079	0,8618	0,004418	3 0,002323	3 0,003681	205,3	0,0025	1,9014	1,5845	turb.	0,0284
0,9755	-0,0046	0,8307	0,005136	0,002602	20,004083	3224,1	0,0022	1,9741	1,5695	turb.	0,0303
0,9897 0 9973	-0,0020	0,7805	0,009928	0,004305 0 004306	0,000158 0 005158	0 000,0 1 283 3	0,0000	∠,3038 2.3038	1,1969	iurb. abcel	0,0000
1,0000	0,0000	0,1877	0,009928	3 0,004309	0,005158	80,9	0,0000	2,3038	1,1969	abgel.	0,0000
										2	

Profil NACA0016 Geschwindigkeitsverteilung

Medium Wasser, Re:1E6 Anstellwinkel: α=10°

Profil NACA0016 Grenzschichtdicken

Medium Wasser, Re:1E6 Anstellwinkel: α=10°

Profil NACA0016 Diagrammfläche e Impulsaustausch-Reynoldszahl Re₈₂ und lokaler Reibungskoeffizient c_F Wasser, Re:1E6, Anstellwinkel: a=10°

α [°] 15,000	Re [-] 100000	Mach [-] 0,000	∧ [-] ∞	Ca [-] 1,050	Cw [-] 0,11318	Cm 0.25 [-] -0,097					
x/l	v/l	v/V	δ1	δ2	δ3	Reō 2	C f	H 12	H 32	Zust.	v1
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[%]
1,0000	0,0000	0,1841	0,001587	0,046844	0,000830	862,3	0,0000	0,0339	0,0177	abgel.	0,0000
0,9973	0,0005	0,6629	0,001587	0,046844	0,000830) 3105,3	0,0000	0,0339	0,0177	abgel.	0,0000
0,9891	0,0020	0,7983	0,001587	0,046844) 3739,7	0,0000	0,0339	0,0177	abgel.	0,0000
0,9755	0,0046	0,8009	0,001587	0,046844 0,046844		14060,8 14302 6	0,0000	0,0339	0,0177	abgel.	0,0000
0.9330	0.0121	0.9629	0.001587	0.046844	0.000830) 4510.4	0.0000	0.0339	0.0177	abgel.	0.0000
0,9045	0,0170	1,0034	0,001587	0,046844	0,000830	4700,4	0,0000	0,0339	0,0177	abgel.	0,0000
0,8716	0,0225	1,0419	0,001587	0,046844	0,000830) 4880,4	0,0000	0,0339	0,0177	abgel.	0,0000
0,8346	0,0284	1,0792	0,001587	0,046844	0,000830) 5055,5	0,0000	0,0339	0,0177	abgel.	0,0000
0,7939	0,0345	1,1164	0,001587	0,046844) 5229,4	0,0000	0,0339	0,0177	abgel.	0,0000
0,7500	0,0409	1,1559	0,001587	0,040044 0 046844	0,000830	5586.8	0,0000	0,0339	0,0177	abyel. abgel	0,0000
0.6545	0.0535	1.2331	0.001587	0.046844	0.000830) 5776.3	0.0000	0.0339	0.0177	abgel.	0.0000
0,6040	0,0594	1,2759	0,001587	0,046844	0,000830) 5976,9	0,0000	0,0339	0,0177	abgel.	0,0000
0,5523	0,0649	1,3217	0,001587	0,046844	0,000830	06191,2	0,0000	0,0339	0,0177	abgel.	0,0000
0,5000	0,0697	1,3709	0,001587	0,046844	0,000830	06421,9	0,0000	0,0339	0,0177	abgel.	0,0000
0,4477	0,0738	1,4242	0,001587	0,046844 0,046844		00/1,/	0,0000	0,0339	0,0177	abgel.	0,0000
0,3300	0,0703	1,4022	0.001587	0,040044	0,000030) 7238 9	0,0000	0,0339	0.0177	abgel. abgel	0,0000
0,2966	0,0795	1,6145	0,001587	0,046844	0,000830	7563,0	0,0000	0,0339	0,0177	abgel.	0,0000
0,2500	0,0788	1,6908	0,001587	0,046844	0,000830) 7920,4	0,0000	0,0339	0,0177	abgel.	0,0000
0,2061	0,0766	1,7758	0,001587	0,046844	0,000830	8318,5	0,0000	0,0339	0,0177	abgel.	0,0000
0,1654	0,0729	1,8719	0,001587	0,046844		02884	0,0000	0,0339	0,0177	abgel.	0,0000
0,1204	0,0078	2 1142	0.001587	0,040844	0,000830) 9200,4	0,0000	0,0339	0,0177	abgel. abgel	0,0000
0,0670	0,0534	2,2740	0,001587	0,046844	0,000830	0 10652,3	0,0000	0,0339	0,0177	abgel.	0,0000
0,0432	0,0444	2,4725	0,001587	0,046844	0,000830	11582,1	0,0000	0,0339	0,0177	turb.	0,0000
0,0245	0,0345	2,7163	0,000668	0,000231	0,000357	7 68,6	0,0042	2,8981	1,5457	lam.	0,0219
0,0109	0,0237	2,9786	0,000343	0,000148	0,000238	346,1	0,0139	2,3171	1,6079	lam.	0,0120
0.0000	0.0000	2.7508	0.000276	0.000124	0.000202	2 25.2	0.0221	2,2201	1.6223	lam.	0.0083
0,0027	-0,0121	1,9923	0,000353	0,000158	0,000257	7 18,7	0,0387	2,2277	1,6213	lam.	0,0072
0,0109	-0,0237	1,1841	0,000473	0,000212	0,000344	12,5	0,0575	2,2317	1,6207	lam.	0,0059
0,0245	-0,0345	0,5860	0,001057	0,000471	0,000762	28,7	0,0814	2,2442	1,6187	lam.	0,0050
0,0432	-0,0444	0,1838	0,000160	0,000072		0,7	0,0001	2,2364	1,6200	lam.	0,1414
0.0955	-0.0612	0.2845	0.000158	0.000071	0.0000114	10,0 10.7	0.0000	2,2364	1.6200	lam.	0.1414
0,1284	-0,0678	0,4261	0,000799	0,000357	0,000579	9 10,2	0,0700	2,2363	1,6200	lam.	0,0053
0,1654	-0,0729	0,5320	0,000981	0,000436	6 0,000706	6 18,6	0,0378	2,2484	1,6181	lam.	0,0073
0,2061	-0,0766	0,6126	0,001162	0,000513	0,000828	3 27,3	0,0251	2,2677	1,6151	lam.	0,0089
0,2500	-0,0788	0,0745	0,001349	0,000590	0,000951	30,1	0,0184	2,2001	1,0120	lam.	0,0104
0.3455	-0.0789	0,7223	0.001744	0.000749	0.001203	3 54.1	0.0143	2,3001	1,6061	lam.	0.0131
0,3960	-0,0769	0,7880	0,001947	0,000829	0,001329	62,9	0,0098	2,3487	1,6032	lam.	0,0143
0,4477	-0,0738	0,8104	0,002156	0,000911	0,001458	371,8	0,0083	2,3677	1,6006	lam.	0,0155
0,5000	-0,0697	0,8277	0,002369	0,000993	0,001587	7 80,5	0,0073	2,3854	1,5982	lam.	0,0166
0,5523	-0,0649	0,8412	0,002577	0,001073	0,001712	288,8	0,0064	2,4024	1,5959	lam.	0,0176
0.6545	-0.0535	0.8593	0.002991	0.001229	0.001956	57,0 5104.6	0.0052	2,4340	1,5930	lam.	0.0195
0,7034	-0,0472	0,8649	0,003197	0,001305	0,002074	112,1	0,0048	2,4502	1,5896	lam.	0,0205
0,7500	-0,0409	0,8684	0,003402	0,001378	0,002187	7 119,2	0,0044	2,4686	1,5873	lam.	0,0214
0,7939	-0,0345	0,8697	0,003616	0,001451	0,002299	9 126,0	0,0040	2,4920	1,5844	lam.	0,0223
0,8346	-0,0284	0,8687	0,003848	0,001524	0,002409	132,6	0,0036	2,5245	1,5804	lam.	0,0234
0,0710	-0,0225	0,8050	0,004130	0,001604	0,002520	7 146 2	0,0032	2,5745	1,5745	lam	0,0249
0,9330	-0,0121	0,8470	0,005097	0,001799	0,002789	9 154,3	0,0020	2,8338	1,5507	lam.	0,0314
0,9568	-0,0079	0,8302	0,004101	0,001933	0,002983	3 163,7	0,0019	2,1217	1,5433	turb.	0,0326
0,9755	-0,0046	0,8040	0,004542	0,002128	0,003278	3 176,5	0,0018	2,1348	1,5409	turb.	0,0332
0,9891	-0,0020	0,7587	0,007766	0,003525	0,003986	5 267,5	0,0000	2,2031	1,1308	turb.	0,0000
0,9973	-0,0005	0,0410	0,007766	0,003525	0,003986	0 ZZD,9 8 64 9	0,0000	2,2031	1,1308	abgel. abgel	0,0000
1,0000	0,0000	0,1041	0,001100	,			5,0000	2,2001	1,1000	abyci.	0,0000

Geschwindigkeitsverteilung Medium Wasser, Re:1E6 Anstellwinkel: α=15°

Profil NACA0016 Grenzschichtdicken Medium Wasser, Re:1E6 Anstellwinkel: α=15°

α [°] 20.000	Re [-] 100000	Mach [-] 0.000	∧ [-] ∞	Ca [-] 1 249	Cw [-] 0 18401	Cm 0.25 [-] -0 126					
20,000		0,000		1,243	0,10401	-0,120					
X/I	y/l	V/V	0_1	0_2	0_3	Re0_2	C_t	H_12	H_32	Zust.	y1
[-] 1 0000	[-]	[-] 0 1701	[-] 0.001145	[-] 5 0 100021		[-] 1807 3	[-]	[⁻] 0.0113	[-]	[-] abael	
0 0073	0,0000	0,17,91	0,001140	5 0,100321		6547.0	0,0000	0,0113	0,0000	abyei. abgel	0,0000
0,9891	0,0000	0,7836	0.001145	5 0 100921		7907 7	0,0000	0.0113	0,0060	abgel.	0,0000
0.9755	0.0046	0.8543	0.001145	50.100921	0.000601	8621.6	0.0000	0.0113	0.0060	abgel.	0.0000
0,9568	0,0079	0,9090	0,001145	50,100921	0,000601	9173,3	0,0000	0,0113	0,0060	abgel.	0,0000
0,9330	0,0121	0,9569	0,001145	50,100921	0,000601	9657,3	0,0000	0,0113	0,0060	abgel.	0,0000
0,9045	0,0170	1,0015	0,001145	50,100921	0,000601	10107,3	0,0000	0,0113	0,0060	abgel.	0,0000
0,8716	0,0225	1,0444	0,001145	50,100921	0,000601	10540,0	0,0000	0,0113	0,0060	abgel.	0,0000
0,8346	0,0284	1,0866	0,001145	50,100921	0,000601	10966,2	0,0000	0,0113	0,0060	abgel.	0,0000
0,7939	0,0345	1,1290	0,001145	0,100921		11394,3	0,0000	0,0113	0,0060	abgel.	0,0000
0,7500	0,0409	1,1724	0,001145	0,100921		11031,0	0,0000	0,0113	0,0060	abgel.	0,0000
0,7034	0,0472	1,2174	0,001140	5 0,100921		12200,0	0,0000	0,0113	0,0000	abyel. abgel	0,0000
0,6040	0.0594	1,2040	0.001145	5 0 100921	0,000601	13273 5	0,0000	0.0113	0,0060	abgel.	0,0000
0,5523	0,0649	1,3695	0,001145	50,100921	0,000601	13821,5	0,0000	0,0113	0,0060	abgel.	0,0000
0,5000	0,0697	1,4284	0,001145	50,100921	0,000601	14415,4	0,0000	0,0113	0,0060	abgel.	0,0000
0,4477	0,0738	1,4926	0,001145	50,100921	0,000601	15063,2	0,0000	0,0113	0,0060	abgel.	0,0000
0,3960	0,0769	1,5629	0,001145	50,100921	0,000601	15773,0	0,0000	0,0113	0,0060	abgel.	0,0000
0,3455	0,0789	1,6404	0,001145	50,100921	0,000601	16554,9	0,0000	0,0113	0,0060	abgel.	0,0000
0,2966	0,0795	1,7262	0,001145	50,100921	0,000601	17421,0	0,0000	0,0113	0,0060	abgel.	0,0000
0,2500	0,0788	1,8221	0,001145	0,100921		18388,3	0,0000	0,0113	0,0060	abgel.	0,0000
0,2001	0,0700	2 0546	0,001140	5 0,100921		20735.6	0,0000	0,0113	0,0000	abyel. abgel	0,0000
0,1034	0,0723	2,0040	0.001145	5 0,100321	0,000001	22206.3	0,0000	0,0113	0,0000	abgel. abgel	0,0000
0.0955	0.0612	2.3757	0.001145	50.100921	0.000601	23976.0	0.0000	0.0113	0.0060	abgel.	0.0000
0,0670	0,0534	2,5929	0,001145	50,100921	0,000601	26167,3	0,0000	0,0113	0,0060	abgel.	0,0000
0,0432	0,0444	2,8684	0,001145	50,100921	0,000601	28948,0	0,0000	0,0113	0,0060	abgel.	0,0000
0,0245	0,0345	3,2182	0,001145	50,100921	0,000601	32478,4	0,0000	0,0113	0,0060	turb.	0,0000
0,0109	0,0237	3,6233	0,000351	0,000148	3 0,000237	57,8	0,0103	2,3733	1,6000	lam.	0,0139
0,0027	0,0121	3,8986	0,000256	5 0,000115	50,000186	641,7	0,0173	2,2304	1,6209	lam.	0,0108
0,0000	0,0000	3,6351	0,000258	30,000117) 33,4	0,0221	2,2120	1,6238	lam.	0,0095
0,0027	-0,0121	2,8251	0,000324	0,000140	0,000237	27,5	0,0208	2,2153	1,0233	lam.	0,0086
0,0109	-0,0237	1,0775	0,000420	5 0,000 190	0,000312	16.2	0,0330	2,2220	1,0222	lam	0,0078
0.0432	-0.0444	0.6419	0.000705	5 0.000315	0.000511	9.2	0.0773	2.2352	1.6202	lam.	0.0051
0,0670	-0,0534	0,2925	0,000224	0,000100	0,000162	20,5	0,0001	2,2364	1,6200	lam.	0,1414
0,0955	-0,0612	0,0422	0,000001	0,000000	0,000001	0,0	0,0000	2,2364	1,6200	lam.	0,0000
0,1284	-0,0678	0,1432	0,000232	2 0,000104	0,000168	80,5	0,0001	2,2364	1,6200	lam.	0,1414
0,1654	-0,0729	0,2840	0,001181	0,000528	3 0,000856	67,6	0,0942	2,2360	1,6200	lam.	0,0046
0,2061	-0,0766	0,3932	0,001059	0,000474	0,000769	9 13,5	0,0533	2,2329	1,6205	lam.	0,0061
0,2500	-0,0788	0,4790	0,001228			021,5 0207	0,0325	2,2501	1,01/0	lam.	0,0078
0,2900	-0,0795	0,5471	0,001402	0,000018	0,000998	37.8	0,0231	2,2007	1 6127	lam	0,0093
0.3960	-0.0769	0.6456	0.001761	0.000766	0.001233	3 46.1	0.0142	2,2992	1.6104	lam.	0.0119
0,4477	-0,0738	0,6813	0,001944	0,000840	0,001351	54,3	0,0118	2,3140	1,6082	lam.	0,0130
0,5000	-0,0697	0,7105	0,002124	0,000912	2 0,001465	62,2	0,0101	2,3284	1,6061	lam.	0,0140
0,5523	-0,0649	0,7346	0,002303	3 0,000984	0,001578	8 69,9	0,0089	2,3412	1,6043	lam.	0,0150
0,6040	-0,0594	0,7544	0,002477	0,001053	3 0,001687	77,3	0,0079	2,3526	1,6027	lam.	0,0159
0,6545	-0,0535	0,7709	0,002644	0,001119	0,001792	284,4	0,0071	2,3630	1,6012	lam.	0,0167
0,7034	-0,0472	0,7843	0,002808	30,001183		91,2 07.6	0,0065	2,3728	1,5999	lam.	0,0175
0,7500	-0,0409	0,7950	0,002900	0,001244	0,001905	103.6	0,0060	2,3031	1,0900	lam	0,0102
0,7333	-0,0343	0,8084	0.003286	3 0 001362	0,002001	103,0	0,0050	2,3350	1,5900	lam	0,0190
0,8716	-0,0225	0,8107	0,003468	3 0,001422	2 0,002263	3 115.0	0,0047	2,4390	1,5911	lam.	0,0206
0,9045	-0,0170	0,8094	0,003690	0,001487	0,002359	120,6	0,0043	2,4808	1,5857	lam.	0,0217
0,9330	-0,0121	0,8038	0,003997	0,001565	5 0,002468	3 126,7	0,0037	2,5543	1,5768	lam.	0,0234
0,9568	-0,0079	0,7922	0,004508	3 0,001663	3 0,002597	133,7	0,0028	2,7100	1,5611	lam.	0,0267
0,9755	-0,0046	0,7712	0,005775	5 0,001808	3 0,002766	5 143,3	0,0012	3,1934	1,5297	lam.	0,0404
0,9891	-0,0020	0,7312	0,006389	0,002966	0,003336	216,9	0,0000	2,1544	1,1249	turb.	0,0000
0,9973		0,0197	0,000385	0,002966	0,003336 0,003336	0 103,0 5 5 2 1	0,0000	2,1544	1,1249	abgel.	0,0000
1,0000	0,0000	0,1791	0,000368	0,002900	0,003330	55,1	0,0000	2,1044	1,1249	abyei.	0,0000

Profil NACA0016 Geschwindigkeitsverteilung

Medium Wasser, Re:1E6 Anstellwinkel: α=20°

α [°] 25.000	Re [-] 100000	Mach [-] 0.000	∧ [-]	Ca [-] 1 277	Cw [-] 0.29707	Cm 0.25 [-]					
23,000	100000	0,000		1,277	0,23707	-0,100					
x/l	y/l	v/V	δ_1	δ_2	δ_3	Reō_2	C_f	H_12	H_32	Zust.	y1
[-]	[-]	[-]	[-]	[-]		[-]	[-]	[-]	[-]	[-]	[%]
1,0000	0,0000	0,1727	0,001015	0,207844		12096 1	0,0000	0,0049	0,0026	abgel.	0,0000
0,9973	0,0005	0,0290	0,001010	0,207044	0,000531	15854 4	0,0000	0,0049	0,0020	abyei. abgel	0,0000
0,3031	0,0020	0,7020	0.001010	0,207044	0,000551	17350.2	0,0000	0,0049	0,0020	abyel. abgel	0,0000
0,9568	0,0040	0,8925	0.001015	0,207044 0 207844	0,000531	18549.8	0,0000	0,0049	0,0020	abgel.	0,0000
0.9330	0.0121	0.9437	0.001015	0.207844	0.000531	19613.7	0.0000	0.0049	0.0026	abgel.	0.0000
0,9045	0,0170	0,9920	0,001015	0,207844	0,000531	20617,3	0,0000	0,0049	0,0026	abgel.	0,0000
0,8716	0,0225	1,0390	0,001015	5 0,207844	0,000531	21594,2	0,0000	0,0049	0,0026	abgel.	0,0000
0,8346	0,0284	1,0857	0,001015	5 0,207844	0,000531	22566,2	0,0000	0,0049	0,0026	abgel.	0,0000
0,7939	0,0345	1,1331	0,001015	0,207844	0,000531	23551,1	0,0000	0,0049	0,0026	abgel.	0,0000
0,7500	0,0409	1,1819	0,001015	0,207844	0,000531	24565,0	0,0000	0,0049	0,0026	abgel.	0,0000
0,7034	0,0472	1,2329	0,001015	0,207844		25624,2	0,0000	0,0049	0,0026	abgel.	0,0000
0,0040	0,0535	1,2000	0,001010	0,207044	0,000531	20745,3	0,0000	0,0049	0,0020	abgel.	0,0000
0,0040	0,0534	1 4070	0.001010	0,207044 0 207844	0,000531	29243 1	0,0000	0,0049	0,0020	abgel. ahgel	0,0000
0.5000	0.0697	1,4750	0.001015	0.207844	0.000531	30656.5	0.0000	0.0049	0.0026	abgel.	0.0000
0,4477	0,0738	1,5495	0,001015	0,207844	0,000531	32206,2	0,0000	0,0049	0,0026	abgel.	0,0000
0,3960	0,0769	1,6318	0,001015	5 0,207844	0,000531	33915,0	0,0000	0,0049	0,0026	abgel.	0,0000
0,3455	0,0789	1,7229	0,001015	50,207844	0,000531	35810,2	0,0000	0,0049	0,0026	abgel.	0,0000
0,2966	0,0795	1,8247	0,001015	5 0,207844	0,000531	37926,2	0,0000	0,0049	0,0026	abgel.	0,0000
0,2500	0,0788	1,9394	0,001015	0,207844	0,000531	40309,7	0,0000	0,0049	0,0026	abgel.	0,0000
0,2061	0,0766	2,0702	0,001015	0,207844	0,000531	43027,3	0,0000	0,0049	0,0026	abgel.	0,0000
0,1654	0,0729	2,2217	0,001015	0,207844	0,000531	46176,9	0,0000	0,0049	0,0026	abgel.	0,0000
0,1204	0,0070	2,4011	0,001010	0,207044 0 207844	0,000531	49900,9 54437 6	0,0000	0,0049	0,0020	abgel. abgel	0,0000
0,0933	0.0534	2,0132	0.001010	0,207044 0 207844	0,000531	60107 7	0,0000	0,0049	0,0020	abgel. ahgel	0,0000
0.0432	0.0444	3.2424	0.001015	0.207844	0.000531	67391.9	0.0000	0.0049	0.0026	abgel.	0.0000
0,0245	0,0345	3,6956	0,001015	0,207844	0,000531	76810,2	0,0000	0,0049	0,0026	turb.	0,0000
0,0109	0,0237	4,2405	0,000356	6 0,000146	6 0,000232	2 68,2	0,0080	2,4383	1,5913	lam.	0,0158
0,0027	0,0121	4,6717	0,000248	3 0,000111	0,000180) 49,8	0,0144	2,2339	1,6204	lam.	0,0118
0,0000	0,0000	4,4917	0,000244	0,000111	0,000180	0 40,8	0,0183	2,2035	1,6252	lam.	0,0105
0,0027	-0,0121	3,6364	0,000304		0,000224	35,3	0,0212	2,2018	1,6255	lam.	0,0097
0,0109	-0,0237	2,0007	0,000397		0,000292	2 30,0	0,0240	2,2119	1,0239	lann.	0,0091
0,0243	-0,0343	1,0900	0,000010	0,000232	0,000370	197	0,0200	2,2105	1,0220	lam	0,0003
0.0670	-0.0534	0.6733	0.000791	0.000354	0.000574	13.2	0.0545	2.2321	1.6207	lam.	0.0061
0,0955	-0,0612	0,3685	0,001211	0,000542	2 0,000878	37,6	0,0934	2,2355	1,6201	lam.	0,0046
0,1284	-0,0678	0,1409	0,000257	0,000115	5 0,000186	60,4	0,0001	2,2364	1,6200	lam.	0,1414
0,1654	-0,0729	0,0339	0,000001	0,000000	0,000001	0,0	0,0000	2,2364	1,6200	lam.	0,0000
0,2061	-0,0766	0,1708	0,000257	0,000115	50,000186	60,4	0,0001	2,2364	1,6200	lam.	0,1414
0,2500	-0,0788	0,2799	0,001120	0,000501	0,000812	28,6	0,0833	2,2353	1,6202	lam.	0,0049
0,2900	-0,0795	0,3070	0,001291		0,000933	0 10,2	0,0430	2,2411	1,0192	lam	0,0000
0,3455	-0,0789	0,4393	0.001430	0 000715	50,001040	523,0 531.4	0,0293	2,2555	1,0173	lam	0,0083
0.4477	-0.0738	0.5471	0.001784	0.000783	0.001264	39.0	0.0173	2.2783	1.6135	lam.	0.0108
0,5000	-0,0697	0,5880	0,001945	5 0,000849	0.001369	46.5	0,0143	2,2901	1,6117	lam.	0,0118
0,5523	-0,0649	0,6224	0,002102	2 0,000914	0,001471	53,7	0,0122	2,3007	1,6101	lam.	0,0128
0,6040	-0,0594	0,6516	0,002253	0,000975	50,001569	060,7	0,0106	2,3099	1,6088	lam.	0,0137
0,6545	-0,0535	0,6765	0,002397	0,001034	0,001662	2 67,4	0,0095	2,3177	1,6076	lam.	0,0145
0,7034	-0,0472	0,6977	0,002532	2 0,001089	0,001750	73,7	0,0086	2,3248	1,6066	lam.	0,0153
0,7500	-0,0409	0,7156	0,002655	0,001140	0,001831	79,6	0,0079	2,3316	1,6056	lam.	0,0159
0,7939	-0,0345	0,7304	0,002783	0,001190	0,001908		0,0073	2,3390	1,0040	lam.	0,0100
0,0340	-0,0204	0,7420	0,002907	0,001230	5 0,00 1964	190,4	0,0008	2,3400	1,0032	lanı. İsm	0,0172
0.9045	-0.0170	0.7547	0.003184	0.001334	0.002132	2 100 1	0.0058	2.3862	1.5980	lam	0.0185
0,9330	-0,0121	0,7545	0,003378	3 0.001392	2 0,002216	6 105.0	0,0053	2,4276	1,5925	lam.	0,0195
0,9568	-0,0079	0,7483	0,003666	0,001463	0,002315	5 110,4	0,0045	2,5064	1,5826	lam.	0,0211
0,9755	-0,0046	0,7326	0,004214	0,001564	0,002444	117,1	0,0033	2,6938	1,5625	lam.	0,0247
0,9891	-0,0020	0,6982	0,005799	0,002635	5 0,003012	2 184,0	0,0000	2,2009	1,1432	turb.	0,0000
0,9973	-0,0005	0,5938	0,005799	0,002635	50,003012	156,5	0,0000	2,2009	1,1432	abgel.	0,0000
1,0000	0,0000	0,1727	0,005799	0,002635	0,003012	45,5	0,0000	2,2009	1,1432	abgel.	0,0000

Geschwindigkeitsverteilung Medium Wasser, Re:1E6 Anstellwinkel: α=25°

α [°] 30,000	Re [-] 100000	Mach [-] 0,000	∧ [-] ∞	Ca [-] 1,182	Cw [-] 0,44758	Cm 0.25 [-] -0,178					
x/l	v/l	v/V	δ1	δ2	δ3	Reō 2	C f	H 12	H 32	Zust.	v1
[-]	í-1	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[%]
1,0000	0,0000	0,1650	0,000853	0,388320	0,000448	8 6408,8	0,0000	0,0022	0,0012	abgel.	0,0000
0,9973	0,0005	0,6057	0,000853	0,388320	0,000448	3 23520,7	0,0000	0,0022	0,0012	abgel.	0,0000
0,9891	0,0020	0,7363	0,000853	3 0,388320	0,000448	3 28590,2	0,0000	0,0022	0,0012	abgel.	0,0000
0,9755	0,0046	0,8098	0,000853	3 0,388320	0,000448	3 3 1 4 4 4 , 4	0,0000	0,0022	0,0012	abgel.	0,0000
0,9568	0,0079	0,8692	0,000853	0,388320	0,000448	33753,9	0,0000	0,0022	0,0012	abgel.	0,0000
0,9330	0,0121	0,9233	0,000853	0,388320	0,000448	33851,7	0,0000	0,0022	0,0012	abgel.	0,0000
0,9045	0,0170	0,9749	0,000853	0,300320	0,000446	39827 5	0,0000	0,0022	0,0012	abyei. abgel	0,0000
0.8346	0.0284	1.0766	0.000853	0.388320	0.000448	3 41805.9	0.0000	0.0022	0.0012	abgel.	0.0000
0,7939	0,0345	1,1286	0,000853	0,388320	0,000448	3 4 3 8 2 4 , 7	0,0000	0,0022	0,0012	abgel.	0,0000
0,7500	0,0409	1,1824	0,000853	3 0,388320	0,000448	3 45915,5	0,0000	0,0022	0,0012	abgel.	0,0000
0,7034	0,0472	1,2389	0,000853	0,388320	0,000448	3 48110,7	0,0000	0,0022	0,0012	abgel.	0,0000
0,6545	0,0535	1,2990	0,000853	0,388320	0,000448	3 50444,4	0,0000	0,0022	0,0012	abgel.	0,0000
0,6040	0,0594	1,3636	0,000853	3 0,388320	0,000448	3 52952,5	0,0000	0,0022	0,0012	abgel.	0,0000
0,5523	0,0649	1,4337	0,000853	0,388320	0,000448	55673,6	0,0000	0,0022	0,0012	abgel.	0,0000
0,5000	0,0097	1,5103	0,000853	0,300320	0,000446	8 61925 8	0,0000	0,0022	0,0012	abyei. abgel	0,0000
0.3960	0.0769	1.6882	0.000853	0.388320	0.000448	3 65555.4	0.0000	0.0022	0.0012	abgel.	0.0000
0,3455	0,0789	1,7924	0,000853	0.388320	0,000448	3 69601,7	0,0000	0,0022	0,0012	abgel.	0,0000
0,2966	0,0795	1,9094	0,000853	0,388320	0,000448	3 74145,6	0,0000	0,0022	0,0012	abgel.	0,0000
0,2500	0,0788	2,0420	0,000853	3 0,388320	0,000448	3 79296,1	0,0000	0,0022	0,0012	abgel.	0,0000
0,2061	0,0766	2,1943	0,000853	0,388320	0,000448	3 85207,3	0,0000	0,0022	0,0012	abgel.	0,0000
0,1654	0,0729	2,3719	0,000853	3 0,388320	0,000448	3 92104,9	0,0000	0,0022	0,0012	abgel.	0,0000
0,1284	0,0678	2,5830	0,000853	0,388320	0,000448	0 100320,1 0 110396 -		0,0022	0,0012	abgel.	0,0000
0,0955	0.0534	3 1691	0.000853	0,388320	0,000448	3 123060 8	3 0 0000	0,0022	0,0012	abgel. abgel	0,0000
0.0432	0.0444	3.5918	0.000853	0.388320	0.000448	3 139476.7	7 0.0000	0.0022	0.0012	abgel.	0.0000
0,0245	0,0345	4,1448	0,000853	0,388320	0,000448	3 160951,5	5 0,0000	0,0022	0,0012	turb.	0,0000
0,0109	0,0237	4,8253	0,000360	0,000144	0,000228	8 77,8	0,0064	2,5065	1,5827	lam.	0,0177
0,0027	0,0121	5,4093	0,000241	0,000108	3 0,000175	5 57,7	0,0124	2,2379	1,6197	lam.	0,0127
0,0000	0,0000	5,3141	0,000234	0,000106	5 0,000173	347,5	0,0159	2,1968	1,6263	lam.	0,0112
0,0027	-0,0121	4,4200	0,000200	5 0,000 13 1 5 0 000 170	0,000214	142,3	0,0179	2,1910	1,0272	lam	0,0100
0.0245	-0,0207	2 2348	0.000485	5 0 000220	0,000277	7 33 8	0,0100	2,2007	1,0237	lam.	0.0095
0,0432	-0,0444	1,5398	0,000605	5 0,000273	3 0,000443	3 28,8	0,0254	2,2166	1,6231	lam.	0,0089
0,0670	-0,0534	1,0490	0,000737	0,000331	0,000537	22,9	0,0317	2,2239	1,6220	lam.	0,0079
0,0955	-0,0612	0,6921	0,000875	5 0,000392	2 0,000636	6 16,7	0,0430	2,2316	1,6207	lam.	0,0068
0,1284	-0,0678	0,4238	0,001024	0,000458	3 0,000742	29,9	0,0719	2,2355	1,6201	lam.	0,0053
0,1654	-0,0729	0,2166	0,000207	0,000092		0,5	0,0001	2,2364	1,6200	lam.	0,1414
0,2001	-0,0766	0,0529	0,000001		0,000001	10,0	0,0000	2,2304	1,6200	lam.	0,0000
0,2300	-0,0700	0,0700	0.002526	0,000034 0 001111	0,000130	387	0,0001	2,2304	1,0200	lam	0,0051
0,3455	-0,0789	0,2739	0,001370	0,000615	5 0,000998	3 11,4	0,0633	2,2262	1,6216	lam.	0,0056
0,3960	-0,0769	0,3472	0,001512	2 0,000674	0,001091	18,5	0,0382	2,2423	1,6191	lam.	0,0072
0,4477	-0,0738	0,4088	0,001660	0,000737	0,001192	2 25,6	0,0272	2,2534	1,6173	lam.	0,0086
0,5000	-0,0697	0,4609	0,001807	0,000799	0,001290) 32,7	0,0210	2,2631	1,6158	lam.	0,0098
0,5523	-0,0649	0,5054	0,001947	0,000857		3 39,5	0,0172	2,2/2/	1,6143	lam.	0,0108
0,6040	-0,0594	0,5430	0,002061	0,000913	0,001472	2 40, 1	0,0140	2,2007	1,0131	lam	0,0117
0,0040	-0,0333	0,6058	0.002324	0 001014	0,001633	3585	0,0127	2,2073	1,0121	lam.	0.0120
0,7500	-0,0409	0,6308	0,002432	2 0,001058	3 0,001705	5 64,2	0,0102	2,2979	1,6105	lam.	0,0140
0,7939	-0,0345	0,6521	0,002532	2 0,001100	0,001770) 69,4	0,0094	2,3028	1,6098	lam.	0,0146
0,8346	-0,0284	0,6699	0,002629	0,001139	0,001833	3 74,3	0,0087	2,3082	1,6090	lam.	0,0151
0,8716	-0,0225	0,6840	0,002724	0,001176	0,001891	1 78,8	0,0081	2,3162	1,6079	lam.	0,0157
0,9045	-0,0170	0,6941	0,002829			183,1	0,0076	2,3294	1,6060	lam.	0,0162
U,933U 0 0569	-0,0121	0,0995	0,002957	0,001250	0,002014 0 002099	+01,2 2015	0,0070	∠,353U 2 3009	1,0020	lam	0,0169
0,9000	-0,0079	0,0900	0 003474	0,001308	50,002088	968	0,0003	∠,3990 2.5076	1,5902	lam	0,0179
0,9891	-0.0020	0,6598	0,005316	0,002333	0,002745	5 153.9	0,0000	2,2788	1,1765	lam.	0.0000
0,9973	-0,0005	0,5633	0,005316	0,002333	0,002745	5 131,4	0,0000	2,2788	1,1765	abgel.	0,0000
1,0000	0,0000	0,1650	0,005316	0,002333	3 0,002745	5 38,5	0,0000	2,2788	1,1765	abgel.	0,0000

Anstellwinkel: a=30°

α [°] 35,000	Re [-] 100000	Mach [-] 0,000	∧ [-] ∞	Ca [-] 1,032	Cw [-] 0,66956	Cm 0.25 [-] -0,201					
x/l	y/l	v/V	δ_1	δ_2	δ_3	Reō_2	C_f	H_12	H_32	Zust.	y1
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[%]
1,0000	0,0000	0,1561	0,000793	0,725053		11318,5	0,0000	0,0011	0,0006	abgel.	0,0000
0,9973	0,0005	0,5/72	0,000793	0,725053		41849,3 51051 1	0,0000	0,0011	0,0006	abgel.	0,0000
0,9091	0,0020	0,7041	0,000793	3 0,725053	0,000408	564197	0,0000	0,0011	0,0000	abyei. abgel	0,0000
0,9568	0,0079	0 8394	0.000793	3 0 725053	0,000408	60857 6	0,0000	0,0011	0,0006	abgel.	0,0000
0,9330	0,0121	0,8958	0,000793	3 0,725053	0,000408	64950,7	0,0000	0,0011	0,0006	abgel.	0,0000
0,9045	0,0170	0,9504	0,000793	3 0,725053	0,000408	68906,4	0,0000	0,0011	0,0006	abgel.	0,0000
0,8716	0,0225	1,0045	0,000793	3 0,725053	0,000408	72832,0	0,0000	0,0011	0,0006	abgel.	0,0000
0,8346	0,0284	1,0592	0,000793	3 0,725053	0,000408	76801,0	0,0000	0,0011	0,0006	abgel.	0,0000
0,7939	0,0345	1,1154	0,000793	3 0,725053	0,000408	80875,5	0,0000	0,0011	0,0006	abgel.	0,0000
0,7500	0,0409	1,1739	0,000793	30,725053	0,000408	85116,6	0,0000	0,0011	0,0006	abgel.	0,0000
0,7034	0,0472	1,2356	0,000793	0,725053		04250 2	0,0000	0,0011	0,0006	abgel.	0,0000
0,0343	0,0555	1,3014	0,000790	8 0 725053	0,000408	005015	0,0000	0,0011	0,0000	abyei. abgel	0,0000
0.5523	0.0649	1,4495	0.000793	3 0.725053	0.000408	105098.4	0.0000	0.0011	0.0006	abgel.	0.0000
0,5000	0,0697	1,5342	0,000793	3 0,725053	0,000408	111238,1	0,0000	0,0011	0,0006	abgel.	0,0000
0,4477	0,0738	1,6278	0,000793	3 0,725053	0,000408	118020,5	5 0,0000	0,0011	0,0006	abgel.	0,0000
0,3960	0,0769	1,7318	0,000793	3 0,725053	0,000408	125561,9	0,0000	0,0011	0,0006	abgel.	0,0000
0,3455	0,0789	1,8482	0,000793	3 0,725053	0,000408	134003,4	0,0000	0,0011	0,0006	abgel.	0,0000
0,2966	0,0795	1,9795	0,000793	3 0,725053	0,000408	143525,5	5 0,0000	0,0011	0,0006	abgel.	0,0000
0,2500	0,0788	2,1291	0,000793	0,725053				0,0011	0,0006	abgel.	0,0000
0,2001	0,0700	2,3010	0,000793	0,725053		100001,3		0,0011	0,0006	abgel.	0,0000
0 1284	0,0723	2,3040	0.000793	3 0 725053	0,000408	199131 3	3 0 0000	0,0011	0,0000	abgel.	0,0000
0.0955	0.0612	3.0445	0.000793	3 0.725053	0.000408	220744.8	3 0.0000	0.0011	0.0006	abgel.	0.0000
0,0670	0,0534	3,4220	0,000793	3 0,725053	0,000408	248116,3	3 0,0000	0,0011	0,0006	abgel.	0,0000
0,0432	0,0444	3,9138	0,000793	3 0,725053	0,000408	283774,2	2 0,0000	0,0011	0,0006	abgel.	0,0000
0,0245	0,0345	4,5625	0,000793	3 0,725053	0,000408	330807,4	0,0000	0,0011	0,0006	abgel.	0,0000
0,0109	0,0237	5,3735	0,000793	3 0,725053	0,000408	389604,2	2 0,0000	0,0011	0,0006	lam.	0,0000
0,0027	0,0121	6,1057	0,000235		0,000170	64,4	0,0110	2,2425	1,6190	lam.	0,0135
0,0000	0,0000	0,0901 5 1600	0,000224	10,000102		55,5 191	0,0142	2,1921	1,0271	lam	0,0119
0,0027	-0.0237	3 8516	0,000270	3 0 000120	0,000200	45 1	0,0150	2,1899	1,0201	lam	0,0110
0.0245	-0.0345	2.7559	0.000461	0.000210	0.000341	41.4	0.0182	2.1967	1.6264	lam.	0.0105
0,0432	-0,0444	1,9729	0,000576	0,000261	0,000424	37,0	0,0201	2,2047	1,6251	lam.	0,0100
0,0670	-0,0534	1,4168	0,000699	0,000316	0,000513	31,9	0,0231	2,2126	1,6238	lam.	0,0093
0,0955	-0,0612	1,0103	0,000827	0,000372	0,000604	26,3	0,0276	2,2216	1,6223	lam.	0,0085
0,1284	-0,0678	0,7035	0,000962	2 0,000432	2 0,000700	20,1	0,0359	2,2281	1,6213	lam.	0,0075
0,1054	-0,0729	0,4053	0,001102	2 0,000493	0,000798	70	0,0523	2,2335	1,6204	lam.	0,0062
0,2001	-0,0700	0,2701	0,001273	0 000370	0,000923	0.1	0,1010	2,2352	1,0202	lam	0,0044
0.2966	-0.0795	0.0022	0.000001		0.000001	0.0	0.0000	2.2364	1.6200	lam.	0.0000
0,3455	-0,0789	0,1063	0,000832	2 0,000372	2 0,000603	0,1	0,0001	2,2364	1,6200	lam.	0,1414
0,3960	-0,0769	0,1935	0,001405	5 0,000629	0,001019	6,7	0,1067	2,2352	1,6202	lam.	0,0043
0,4477	-0,0738	0,2673	0,001556	0,000695	0,001126	13,5	0,0529	2,2379	1,6198	lam.	0,0061
0,5000	-0,0697	0,3303	0,001695	5 0,000755	0,001222	20,2	0,0348	2,2448	1,6187	lam.	0,0076
0,5523	-0,0649	0,3847	0,001824			20,7	0,0261	2,2528	1,01/4	lam.	0,0088
0,0040	-0,0594	0,4310	0,001947	0,000802	0,001392	30,2 30,2	0,0200	2,2090	1,0103	lam	0,0098
0,0343	-0.0472	0,4731	0.002008	0,000900	0,001407	35,2 45,1	0,0175	2,2000	1 6146	lam	0.0115
0.7500	-0.0409	0.5411	0.002255	5 0.000991	0.001600	50.5	0.0134	2.2749	1.6140	lam.	0.0122
0,7939	-0,0345	0,5688	0,002339	0,001027	0,001656	55,5	0,0121	2,2784	1,6135	lam.	0,0128
0,8346	-0,0284	0,5927	0,002417	0,001059	0,001708	60,3	0,0111	2,2817	1,6130	lam.	0,0134
0,8716	-0,0225	0,6126	0,002490	0,001089	0,001756	64,6	0,0103	2,2860	1,6123	lam.	0,0139
0,9045	-0,0170	0,6283	0,002565	0,001118	0,001802	68,5	0,0096	2,2931	1,6112	lam.	0,0144
0,9330	-0,0121	0,0391	0,002651	0,001149		75.8	0,0090	2,3005	1,0093	iam.	0,0149
0,9000	-0,0079	0,0430	0,002705	70,001180	0,001904	79.0	0,0003	2,3340	1,0000	lam	0,0100
0.9891	-0.0020	0.6164	0.003494	0.001344	0.002112	85.8	0.0051	2.6001	1.5714	lam.	0.0198
0,9973	-0,0005	0,5285	0,005100	0,002085	0,002571	110,2	0,0000	2,4457	1,2327	turb.	0,0000
1,0000	0,0000	0,1561	0,005100	0,002085	0,002571	32,6	0,0000	2,4457	1,2327	abgel.	0,0000

Geschwindigkeitsverteilung Medium Wasser, Re:1E6 Anstellwinkel: α=35°

α [°] 40.000	Re [-]	Mach [-]	∧ [-]	Ca [-] 0.850	Cw [-]	Cm 0.25					
40,000	100000	0,000	~	0,050	0,09203	-0,221					
x/l	y/l	v/V	δ_1	δ_2	δ_3	Reō_2	C_f	H_12	H_32	Zust.	y1
[-] 1.0000	[-]	[-] 0.1460	[-]	[-] 1 190009	[-]	[-] 2 17257 7	[-]	[-]	[-]	[-] abaol	
0 0073	0,0000	0,1400	0,000084	1,109000 1 1 180008	0,000356	8647154	0,0000	0,0000	0,0003	abyei. abgel	0,0000
0.9891	0.0020	0.6666	0.000684	1.189008	0.000358	3 79258.0	0.0000	0.0006	0.0003	abgel.	0.0000
0,9755	0,0046	0,7406	0,000684	1,189008	0,000358	88059,5	0,0000	0,0006	0,0003	abgel.	0,0000
0,9568	0,0079	0,8031	0,000684	1,189008	0,000358	8 95488,2	0,0000	0,0006	0,0003	abgel.	0,0000
0,9330	0,0121	0,8615	0,000684	1,189008	0,000358	3 102437,9	9 0,0000	0,0006	0,0003	abgel.	0,0000
0,9045	0,0170	0,9186	0,000684			109224,9		0,0006	0,0003	abgel.	0,0000
0,8710	0,0223	1 0338	0,000084	1,189008	0,000358	122925 1		0,0006	0,0003	abgel.	0,0000
0,7939	0,0345	1,0938	0,000684	1,189008	0,000358	3 130056,4	0,0000	0,0006	0,0003	abgel.	0,0000
0,7500	0,0409	1,1565	0,000684	1,189008	0,000358	3 137511,5	5 0,0000	0,0006	0,0003	abgel.	0,0000
0,7034	0,0472	1,2229	0,000684	1,189008	0,000358	3 145399,5	5 0,0000	0,0006	0,0003	abgel.	0,0000
0,6545	0,0535	1,2939	0,000684	1,189008	0,000358	8 153839,9	0,0000	0,0006	0,0003	abgel.	0,0000
0,0040	0,0594	1,3700	0,000084	1,109000 1 1 189008	0,000358	172904,0 172919 F	5 0,0000	0,0000	0,0003	abgel. abgel	0,0000
0,5000	0,0697	1,5464	0,000684	1,189008	0.000358	183868.0	0,0000	0,0006	0,0003	abgel.	0,0000
0,4477	0,0738	1,6484	0,000684	1,189008	0,000358	195996,1	0,0000	0,0006	0,0003	abgel.	0,0000
0,3960	0,0769	1,7622	0,000684	1,189008	0,000358	8 209522,3	3 0,0000	0,0006	0,0003	abgel.	0,0000
0,3455	0,0789	1,8899	0,000684	1,189008	0,000358	3 224713,8	3 0,0000	0,0006	0,0003	abgel.	0,0000
0,2966	0,0795	2,0346	0,000684			241912,5	50,0000	0,0006	0,0003	abgel.	0,0000
0,2000	0,0766	2,2000	0,000084	1,189008	0,000358	201377,0	1 0 0000	0,0006	0,0003	abgel.	0,0000
0,1654	0,0729	2,6171	0,000684	1,189008	0,000358	311171,3	3 0,0000	0,0006	0,0003	abgel.	0,0000
0,1284	0,0678	2,8884	0,000684	1,189008	0,000358	343428,5	5 0,0000	0,0006	0,0003	abgel.	0,0000
0,0955	0,0612	3,2232	0,000684	1,189008	0,000358	383245,2	2 0,0000	0,0006	0,0003	abgel.	0,0000
0,0670	0,0534	3,6490	0,000684	1,189008	0,000358	3 433866,7	7 0,0000	0,0006	0,0003	abgel.	0,0000
0,0432	0,0444	4,2001 4 9455	0,000684	F 1, 109000 L 1 180008	0,000350	588025 (0,0006	0,0003	abgel. abgel	0,0000
0.0109	0.0237	5.8807	0.000684	1.189008	0.000358	699220.0	0.0000	0.0006	0.0003	lam.	0.0000
0,0027	0,0121	6,7557	0,000232	2 0,000103	0,000167	71,1	0,0100	2,2436	1,6189	lam.	0,0142
0,0000	0,0000	6,8317	0,000219	0,000101	0,000164	59,0	0,0130	2,1823	1,6288	lam.	0,0124
0,0027	-0,0121	5,8806	0,000265	50,000122	2 0,000198	3 54,7	0,0141	2,1778	1,6295	lam.	0,0119
0,0109	-0,0237	4,4575	0,000344		0,000257	51,8 186	0,0148	2,1810	1,6290	lam.	0,0110
0,0245	-0,0343	2 3910	0,000442	3 0 000202	0,000328) 44 7	0,0157	2,1001	1,0279	lam	0.0109
0,0670	-0,0534	1,7737	0,000670	0,000304	0,000494	40,3	0,0185	2,2027	1,6254	lam.	0,0104
0,0955	-0,0612	1,3209	0,000792	2 0,000358	0,000582	2 35,2	0,0210	2,2109	1,6241	lam.	0,0098
0,1284	-0,0678	0,9779	0,000918	3 0,000414	0,000671	29,5	0,0247	2,2186	1,6228	lam.	0,0090
0,1654	-0,0729	0,7106	0,001046	0,000470	0,000762	23,5	0,0308	2,2257	1,6217	lam.	0,0081
0,2001	-0,0700	0,4973	0.001322	0,000528	0,000850	10.8	0,0420	2,2310	1,0200	lam	0,0009
0,2966	-0,0795	0,1813	0,002876	0,001272	0,002056	57,9	0,0872	2,2606	1,6162	lam.	0,0048
0,3455	-0,0789	0,0622	0,000248	3 0,000111	0,000179	0,4	0,0001	2,2364	1,6200	lam.	0,1414
0,3960	-0,0769	0,0383	0,000001	0,000000	0,000001	0,0	0,0000	2,2364	1,6200	lam.	0,0000
0,4477	-0,0738	0,1238	0,000246	5 0,000110	0,000178	30,4	0,0001	2,2364	1,6200	lam.	0,1414
0,5000	-0,0097	0,1973	0,001594	10,000713 10,000713	0,001155	0,0 3 15 2	0,0607	2,2301	1,0200	lam	0,0050
0,6040	-0,0594	0,3166	0.001836	6,000700 60,000818	0,001324	21,4	0,0329	2,2450	1,6186	lam.	0,0078
0,6545	-0,0535	0,3656	0,001940	0,000862	2 0,001394	27,3	0,0256	2,2505	1,6178	lam.	0,0088
0,7034	-0,0472	0,4089	0,002032	2 0,000901	0,001457	32,9	0,0211	2,2552	1,6170	lam.	0,0097
0,7500	-0,0409	0,4473	0,002114	0,000936	0,001513	38,3	0,0180	2,2587	1,6165	lam.	0,0105
0,7939	-0,0345	0,4813	0,002185	0,000966 0 0000000		243,2	0,0159	2,2616	1,6160	lam.	0,0112
0,0340	-0,0204	0,5110	0.002240	5 0,000333 5 0 001017	0,001643	3520	0,0132	2,2050	1,0157	lam	0.0123
0,9045	-0,0170	0,5577	0,002359	0,001040	0,001679	55,8	0,0122	2,2695	1,6148	lam.	0,0128
0,9330	-0,0121	0,5738	0,002417	0,001062	0,001713	8 59,2	0,0114	2,2765	1,6137	lam.	0,0132
0,9568	-0,0079	0,5837	0,002494	0,001088	0,001753	8 62,4	0,0106	2,2923	1,6114	lam.	0,0137
0,9755	-0,0046	0,5845	0,002628	5 U,UU1127		05,8	0,0095	2,3324	1,6055	lam.	0,0145
0,9091	-0,0020	0,5005	0,002938	0,001198	0,001903	960	0,0076	2,4000 2 3704	1,0090	turb	0,0102
1,0000	0,0000	0,1460	0,004664	0,001960	0,002359	28,6	0,0000	2,3794	1,2035	abgel.	0,0000
										-	

Geschwindigkeitsverteilung Medium Wasser, Re:1E6 Anstellwinkel: α=40°

α	Са	Cw	Cm 0.25	T.U.	T.L.	S.U.	S.L.	GZ	N.P.	D.P.
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-50,0	-0,573	0,87345	0,257	0,501	0,001	0,501	0,038	-0,656	0,137	0,698
-45,0	-0,695	0,69429	0,243	0,990	0,001	0,993	0,041	-1,001	0,141	0,599
-40,0	-0,852	0,50192	0,226	0,982	0,002	0,994	0,048	-1,697	0,143	0,516
-35,0	-1,034	0,36116	0,207	0,977	0,003	0,993	0,059	-2,863	0,124	0,450
-30,0	-1,185	0,26547	0,184	0,963	0,004	0,995	0,073	-4,462	0,064	0,406
-25,0	-1,285	0,18480	0,160	0,938	0,004	0,996	0,106	-6,951	-0,247	0,375
-20,0	-1,286	0,12013	0,134	0,879	0,005	0,997	0,199	-10,703	-18,721	0,354
-15,0	-1,288	0,05464	0,091	0,742	0,010	0,997	0,544	-23,578	0,869	0,321
-10,0	-1,122	0,02560	0,033	0,523	0,018	0,996	0,898	-43,844	0,366	0,279
-5,0	-0,603	0,01798	0,012	0,336	0,054	0,994	0,979	-33,538	0,279	0,269
0,0	0,000	0,01554	-0,000	0,175	0,175	0,991	0,991	0,000	0,269	0,250
5,0	0,603	0,01804	-0,012	0,054	0,336	0,978	0,993	33,400	0,279	0,269
10,0	1,122	0,02561	-0,033	0,018	0,523	0,898	0,996	43,821	0,366	0,279
15,0	1,289	0,05458	-0,091	0,010	0,742	0,544	0,997	23,610	0,869	0,321
20,0	1,286	0,11981	-0,134	0,005	0,879	0,199	0,997	10,732	-14,462	0,354
25,0	1,284	0,18686	-0,160	0,004	0,938	0,104	0,996	6,872	-0,247	0,375
30,0	1,185	0,26614	-0,184	0,003	0,963	0,073	0,995	4,451	0,063	0,406
35,0	1,034	0,36109	-0,207	0,003	0,977	0,059	0,993	2,864	0,124	0,450
40,0	0,852	0,50481	-0,226	0,002	0,982	0,048	0,994	1,687	0,143	0,516
45,0	0,695	0,69138	-0,243	0,001	0,990	0,041	0,993	1,006	0,141	0,599
50,0	0,573	0,83695	-0,257	0,001	0,501	0,037	0,501	0,684	0,138	0,698

Die Stall-Eigenschaften von Profilkonturen für Leit- und Steuerflächen an Seefahrzeugen

NACA0016 Re: 10⁶

α	Са	Cw	Cm 0.25	T.U.	T.L.	S.U.	S.L.	GZ	N.P.	D.P.
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
-30,0	-0,941	0,40415	0,027	0,963	0,004	0,995	0,073	-2,329	0,246	0,279
-29,0	-0,984	0,37304	0,027	0,960	0,004	0,994	0,079	-2,637	0,245	0,278
-28.0	-1.027	0.34780	0.027	0.957	0.004	0.994	0.084	-2.951	0.243	0.276
-27.0	-1.069	0.31903	0.027	0.950	0.004	0.996	0.090	-3.352	0.242	0.275
-26.0	-1.112	0.29312	0.026	0.943	0.004	0.996	0.095	-3.794	0.243	0.274
-25.0	-1,155	0.26805	0.026	0.938	0.004	0.996	0.106	-4.308	0.245	0.273
-24.0	-1,196	0.24352	0.026	0.931	0.004	0.996	0.117	-4.910	0.242	0.272
-23.0	-1,233	0.22181	0.025	0.918	0.005	0.996	0.128	-5.560	0.243	0.271
-22.0	-1.270	0.19824	0.025	0.910	0.005	0.996	0.148	-6.404	0.244	0.270
-21.0	-1.302	0.17612	0.025	0.895	0.005	0.997	0.170	-7.390	0.242	0.269
-20,0	-1,329	0,15520	0,025	0,879	0,005	0,997	0,199	-8,563	0,242	0,269
-19,0	-1,352	0,13394	0,025	0,859	0,006	0,997	0,238	-10,094	0,240	0,268
-18,0	-1,369	0,11338	0,024	0.838	0,006	0,997	0,287	-12,078	0.239	0,268
-17,0	-1,384	0,09228	0,024	0,808	0,007	0,997	0,359	-14,996	0,233	0,268
-16,0	-1,391	0,07335	0,024	0,777	0,008	1,000	0,445	-18,970	0,147	0,267
-15,0	-1,391	0,05721	0,024	0,742	0,010	0,997	0,544	-24,308	0,323	0,267
-14,0	-1,376	0,04537	0,023	0,703	0,012	0,996	0,640	-30,321	0,286	0,267
-13,0	-1,343	0,03748	0,022	0,658	0,013	0,996	0,724	-35,840	0,277	0,266
-12,0	-1,295	0,03191	0,021	0,612	0,014	0,996	0,798	-40,587	0,272	0,266
-11,0	-1,228	0,02817	0,019	0,567	0,016	0,996	0,856	-43,605	0,269	0,266
-10,0	-1,145	0,02545	0,018	0,523	0,018	0,996	0,898	-44,991	0,268	0,266
-9,0	-1,052	0,02331	0,016	0,483	0,021	0,995	0,929	-45,113	0,267	0,265
-8,0	-0,949	0,02162	0,015	0,448	0,027	0,995	0,948	-43,909	0,266	0,265
-7,0	-0,841	0,02024	0,013	0,407	0,033	0,995	0,962	-41,548	0,266	0,265
-6,0	-0,728	0,01908	0,011	0,369	0,041	0,994	0,972	-38,142	0,266	0,265
-5,0	-0,610	0,01797	0,009	0,336	0,054	0,994	0,979	-33,952	0,265	0,265
-4,0	-0,490	0,01723	0,007	0,303	0,072	0,993	0,982	-28,450	0,265	0,265
-3,0	-0,369	0,01645	0,006	0,267	0,093	0,993	0,986	-22,431	0,265	0,265
-2,0	-0,247	0,01578	0,004	0,236	0,118	0,992	0,990	-15,627	0,265	0,265
-1,0	-0,123	0,01546	0,002	0,208	0,145	0,991	0,990	-7,984	0,265	0,265
0,0	0,000	0,01554	-0,000	0,175	0,175	0,991	0,991	0,000	0,265	0,250
1,0	0,123	0,01547	-0,002	0,145	0,208	0,990	0,991	7,982	0,265	0,265
2,0	0,247	0,01578	-0,004	0,118	0,236	0,990	0,992	15,627	0,265	0,265
3,0	0,369	0,01642	-0,006	0,093	0,267	0,986	0,993	22,470	0,265	0,265
4,0	0,490	0,01/14	-0,007	0,072	0,303	0,983	0,993	28,604	0,265	0,265
5,0	0,610	0,01803	-0,009	0,054	0,336	0,978	0,993	33,829	0,265	0,265
6,0	0,728	0,01908	-0,011	0,041	0,369	0,972	0,994	38,138	0,266	0,265
7,0	0,841	0,02024	-0,013	0,033	0,407	0,962	0,995	41,544	0,200	0,205
8,0	0,949	0,02162	-0,015	0,027	0,448	0,948	0,995	43,904	0,200	0,205
9,0	1,052	0,02333	-0,010	0,021	0,403	0,929	0,990	45,071	0,207	0,200
10,0	1,140	0,02047	-0,010	0,010	0,523	0,090	0,990	44,900	0,200	0,200
12.0	1,220	0,02019	-0,019	0,010	0,507	0,000	0,990	40,002	0,209	0,200
12,0	1,295	0,03107	-0,021	0,014	0,012	0,799	0,990	36 030	0,272	0,200
14.0	1,344	0,03723	-0,022	0,013	0,000	0,720	0,330	30,055	0,211	0,200
15.0	1,301	0,04340	-0,023	0,012	0,703	0,040	0,330	24 338	0,200	0,207
16.0	1,390	0,00710	-0,024	0,010	0,742	0,344	0,007	18 802	0,324	0,207
17.0	1,000	0.09315	-0 024	0,007	0,808	0.354	0,997	14 841	0 224	0.268
18.0	1,371	0 11228	-0.025	0,006	0.838	0 292	0,997	12 209	0 234	0.268
19.0	1.353	0.13288	-0.025	0.006	0.859	0.241	0.997	10,182	0.242	0.268
20.0	1 329	0 15487	-0.025	0,005	0,879	0 199	0,997	8 581	0 243	0,269
21.0	1.302	0.17594	-0.025	0.005	0.895	0.171	0.997	7.399	0.242	0.269
22.0	1.270	0.19796	-0.025	0.005	0.910	0.149	0.996	6.415	0.244	0.270
23.0	1,234	0,22103	-0,026	0.005	0,918	0,129	0,996	5,581	0,243	0,271
24,0	1,196	0,24300	-0,026	0,005	0,931	0,118	0,996	4,921	0,243	0,272
25,0	1,154	0,27049	-0,026	0,004	0,938	0,104	0,996	4,267	0,246	0,273
26,0	1,112	0,29478	-0,026	0,004	0,943	0,094	0,996	3,771	0,243	0,274
27,0	1,069	0,32005	-0,027	0,004	0,950	0,088	0,996	3,341	0,241	0,275
28,0	1,026	0,34629	-0,027	0,004	0,957	0,084	0,994	2,964	0,243	0,276
29,0	0,984	0,37436	-0,027	0,004	0,960	0,079	0,994	2,628	0,244	0,278
30,0	0,941	0,40481	-0,027	0,003	0,963	0,073	0,995	2,325	0,246	0,279

NACA0016 Re 10E6

α	Ca	Cw	Cm 0.2	25	T.U.	T.L.	S.U.	S.L.	GZ	N.P.	D.P.
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	
0,0	0,000	0,0155	4	-0,000	0,175	0,175	0,991	0,991	0,000	0,265	0,250
2,0	0,247	0,0157	8	-0,004	0,118	0,236	0,990	0,992	15,627	0,265	0,265
4,0	0,490	0,0171	4	-0,007	0,072	0,303	0,983	0,993	28,604	0,265	0,265
6,0	0,728	0,0190	8	-0,011	0,041	0,369	0,972	0,994	38,138	0,266	0,265
8,0	0,949	0,0216	2	-0,015	0,027	0,448	0,948	0,995	43,904	0,266	0,265
10,0	1,145	0,0254	7	-0,018	0,018	0,523	0,898	0,996	44,968	0,268	0,266
12,0	1,295	0,0318	7	-0,021	0,014	0,612	0,799	0,996	40,648	0,272	0,266
14,0	1,375	0,0454	6	-0,023	0,012	0,703	0,640	0,996	30,255	0,284	0,267
16,0	1,390	0,0739	4	-0,024	0,008	0,777	0,441	0,997	18,802	-0,101	0,267
18,0	1,371	0,1122	8	-0,025	0,006	0,838	0,292	0,997	12,209	0,237	0,268
20,0	1,329	0,1548	7	-0,025	0,005	0,879	0,199	0,997	8,581	0,242	0,269

Profil NACA0016

Profiloberseite: Transition T und Separation S Variation der Anstellwinkel α, Wasser, Re: 1E6

Die Stall-Eigenschaften von Profilkonturen für Leit- und Steuerflächen an Seefahrzeugen

Re= 10E5

α	Ca	Cw	Cm 0.2	25	T.U.	T.L.	S.U.	S.L.	GΖ	N.P.	D.P.
[°]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	
0,0	0,000	0,0208	32	-0,000	0,392	0,392	0,982	0,983	0,000	0,265	0,250
2,0	0,246	0,0213	80	-0,004	0,293	0,496	0,977	0,987	11,547	0,265	0,265
4,0	0,488	0,0231	9	-0,007	0,198	0,606	0,962	0,989	21,053	0,265	0,265
6,0	0,722	0,0266	64	-0,011	0,112	0,709	0,931	0,988	27,090	0,266	0,265
8,0	0,931	0,0324	1	-0,014	0,050	0,792	0,853	0,986	28,726	0,266	0,265
10,0	1,087	0,0443	6	-0,017	0,030	0,846	0,651	0,983	24,508	0,260	0,265
12,0	1,147	0,0824	1	-0,016	0,020	0,884	0,248	0,982	13,914	0,229	0,264
14,0	1,204	0,1247	'4	-0,014	0,016	0,911	0,060	0,981	9,649	0,235	0,262
16,0	1,264	0,1596	60	-0,015	0,014	0,932	0,038	0,981	7,920	0,263	0,262
18,0	1,287	0,1994	-0	-0,015	0,011	0,944	0,028	0,982	6,452	0,416	0,262
20,0	1,274	0,2464	4	-0,016	0,009	0,957	0,024	0,982	5,168	0,178	0,263

Die Stall-Eigenschaften von Profilkonturen für Leit- und Steuerflächen an Seefahrzeugen

α Ca Cw Cm 0.25 T.U. T.L. S.U. S.L. GZ N.P	D.P.
[°] [-] [-] [-] [-] [-] [-] [-] [-] [-]	
0,0 0,000 0,05198 -0,000 0,477 0,477 0,799 0,799 0,000 0,26	4 0,250
2,0 0,231 0,05557 -0,003 0,353 0,606 0,676 0,859 4,158 0,26	4 0,264
4,0 0,442 0,06300 -0,006 0,233 0,718 0,492 0,891 7,016 0,26	3 0,264
6,0 0,624 0,07820 -0,008 0,115 0,800 0,265 0,914 7,981 0,25	8 0,263
8,0 0,784 0,10140 -0,009 0,050 0,851 0,085 0,934 7,730 0,25	4 0,261
10,0 0,945 0,12975 -0,010 0,030 0,887 0,043 0,945 7,285 0,25	6 0,260
12,0 1,088 0,16824 -0,011 0,020 0,912 0,030 0,957 6,465 0,25	8 0,260
14,0 1,192 0,22083 -0,012 0,016 0,931 0,022 0,963 5,400 0,26	2 0,260
16,0 1,258 0,28935 -0,013 0,014 0,942 0,019 0,969 4,348 0,27	4 0,260
18,0 1,283 0,37469 -0,014 0,011 0,953 0,017 0,974 3,424 0,39	7 0,261
20,0 1,270 0,47392 -0,015 0,009 0,961 0,014 0,977 2,681 0,18	7 0,261

Re= 10E4

[Abbo-59]	Ira H. Abbott, Albert E. von Doenhoff: Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications, New York 1959
[Die13]	Dienst, Mi. (2013) Fluiddynamisch wirksames Strömungsprofil aus geometrischen Grundfiguren, GM-NR: 20 2013 004 881.6. IPC: F03D 1/06
[Eppl-90]	Richard Eppler: Airfoil Design and Data. Springer, Berlin, New York 1990,
[Gorr-17]	Edgar Gorrell, S. Martin: Aerofoils and Aerofoil Structural Combinations. In: NACA Technical Report. Nr. 18, 1917.
[Katz-01]	Joseph Katz, Allen Plotkin (2001) Low-Speed Aerodynamics (Cambridge Aerospace Series) Cambridge University Press; 2 edition
[Krav-39]	Kravets, A. C., (1939) Characteristics of Aircraft Profiles, Moscow.
[Mart-65]	Martynov, A. K. (1965) Practical Aerodynamics, Pergamon Press.
[Sieg-09]	Siegloch, H. (2009) Technische Fluiddynamik. S. 96 ff. 7. Auflage. Springer Verlag Heidelberg, London, N.Y.
[Schl-00]	Schlichting, H (2000) Boundary-Layer Theory, Springer ISBN 3540662707
[Voss-12-1]	Voß, M, Kleinschrodt, HD. (2012) Jahrestreffen der Fachgruppen Computational Fluid Dynamics und Fluidverfahrenstechnik "2-Wege- Fluid-Struktur-Interaktion mit OpenFOAM",1214. März 2012, Weimar.
[Voss-12-2]	Voß, M, Kleinschrodt, HD. (2012) "Fluid-Struktur-Interaktion flexibler Tragflügelprofile nach dem Vorbild der belebten Natur". ANSYS Conference & 30. CADFEM Users' Meeting, 2426. Oktober 2012, Kongress Palais Kassel, 32 S., ISBN 3-937523-09-X
[Voss-13]	Voß, M, Kleinschrodt, HD. (2013) "3D-Fluid-Struktur-Interaktion symmetrischer Profile mit Innenstrukturierung". ANSYS Conference & 31. CADFEM Users' Meeting, 1921. Juni 2013, Rosengarten Mannheim (Veröffentlichung in Vorbereitung)
[w-001]	https://de.wikipedia.org/wiki/Strömungsabriss (abgerufen 25072013)
[w-002]	http://en.wikipedia.org/wiki/Stall_flight (abgerufen 05082013)
[w-003]	http://de.wikipedia.org/wiki/Profil (abgerufen 11032013)
[w-004]	The Airfoil Investigation Database, http://www.worldofkrauss.com/foils/578 (abgerufen 11032013)
[w-005]	UIUC Airfoil Coordinates Database, (abgerufen 11032013) http://www.ae.illinois.edu/m-selig/ads/coord_database.html
[w-006]	http://www.mh-aerotools.de/(abgerufen 032013)

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit, Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

