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Abstract

Sensors can be used to measure the position of an object. In the present thesis the effects
which limit the usage of sensors in high dynamic positioning applications on a nanometer
level are discussed. Various sensor principles and their properties are investigated and
compared. Sensors based on the measurement of i.a. magnetic fields, illumination, or
even strain are characterized, as well as their range, bandwidth, resolution, linearity
and disturbance rejection is determined.

It will be shown that the simultaneous use of multiple sensors and the specific
combination of sensors’ data (fusion) enables a higher performance primarily in terms
of resolution and dynamics. Several techniques for the fusion are discussed under
consideration of various aspects, however the ultimate aim of sensor fusion is similar.
The methods of feedforward control, complementary filtering, Kalman filtering and
optimal filtering (robust control) are developed and verified on practical problems in
position sensor systems. To treat various challenges in sensor filtering and sensor fusion
a methodological approach, containing separable steps of

• problem formulation with well-defined prerequisits and simplifications,

• theory discussion with approach to find a solution,

• analytical proof or reasoning by statistical values out of numerical simulations,

• experiment design, and

• verification on a real time platform

are realized.

keywords: sensor fusion, nanopositioning, high dynamics, high resolution, sensor
noise, Kalman filter, H2-optimal filter, H∞-optimal filter
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Zusammenfassung

Sensoren werden vielfach verwendet um einen Abstand zu messen. In der vorliegenden
Arbeit werden die Beschränkungen hinsichtlich des Einsatzes von Sensoren in hoch-
dynamischen Präzisionsanwendungen auf Nanometer Ebene dargelegt. Verschiedene
Messprinizipien, u.a. basierend auf der Erfassung von Magnetfeldern, Licht und mecha-
nischen Spannungen werden auf Messbereich, Bandbreite, Auflösung, Nichtlinearitäten
und Störunterdrückung charakterisiert.

Es wird gezeigt, dass der gleichzeitige Einsatz von mehreren Sensoren, und die
spezifische Kombination von dessen Signalen (Fusion) eine Erhöhung der Positions-
genaugkeit und der Bandbreite bei dem Einsatz in Regelschleifen erlaubt. Es werden
Methoden zur Filterung und Fusion vorgestellt und auf praktischen Problemstellungen
angewandt. Unter anderem sind dies Komplementärfilter, Kalman Filter bzw. optimale
Filter, gegliedert jeweils in

• Problemstellung inklusive Voraussetzungen,

• die theoretische Vorgehensweise mit einem Lösungsansatz,

• analytische Beweise u.A. zur Stabilität oder Folgerungen mit statistischen Mittel

• Messungen auf einer Echtzeitplatform und Rückschlüsse.

Schlagwörter: Nano-positionierung, hohe Dynamik, hohe Auflösung, Sensorrau-
schen, Kalman Filter, Optimale Filter
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Résumé

Les capteurs peuvent être utilisés pour mesurer la position d’un objet. Dans cette thèse
les effets qui limitent l’utilisation des capteurs dans les applications de positionnement
dynamiques élevées au niveau nanométrique sont discutées. Différents principes de
détection et leurs propriétés sont étudiés et comparés. Capteurs basés sur la mesure des
champs magnétiques, l’éclairage, ou même de la dilatation sont caractérisés; ainsi que
leur gamme de mesure, la bande passante, la résolution, la linéarité et l’antibrouillage
est déterminé.

On va démontrer, que l’utilisation simultanée de plusieurs capteurs et la combinaison
spécifique des données - la fusion des capteurs - offre une performance plus élevé, surtout
en termes de résolution et de la dynamique. Plusieurs techniques de la fusion sont
discutées, par rapport aux différents aspects. Les méthodes pour le réglage en boucle
ouverte, filtrage complémentaire, filtrage de Kalman et filtrage optimal (commande
robuste) sont développées et vérifiées sur des problèmes pratiques dans les systèmes de
détection de position.

Mots-clés: fusion de capteurs, nano-positionnement, dynamique élevée, haute
résolution, le bruit du capteur, filtre de Kalman, H∞ filtre optimal
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CHAPTER 1

Introduction

To introduce to the topic of sensor fusion some preliminary words from D. Simon [34]
about the problems and challenges in nano-positioning and control are reproduced in
followings.

In order to grow spiritually we need to listen and learn from a variety of sources
(...) because we can never know who, when and how will speak to us. (...) In that sense
we need to be essentially open to the data that comes into our lives from others. But if
we listen to everything that is within earshot we will ‘tossed back and forth by the waves,
and blown here and there by every wind of teaching’. We need to reject unhealthy data
in order to prevent ourselves from being misled. (...) We need to strike a healthy balance
between scepticism and acceptance of the views of others. That is, we need to exercise
discernment in order to allow ourselves to be influenced by beneficial information while
rejecting data that may be detrimental.
The band limited frequency response of a control system is similar to spiritual discern-
ment. A control system needs to be responsive to input commands, yet it also needs
to reject input signals that are outside of its desired bandwidth. A control system that
rejects all input signals is clearly ineffective. Yet a control system that responds equally
to all input signals will be ‘tossed back and forth by the waves, and blown here and there
by every wind of input signal.’ The control system needs to strike a healthy balance
between acceptance of desired inputs and rejection of extraneous inputs.

Forgiveness is an essential part of ones. (...) Despite the widespread view, that
forgiveness of an offense is equivalent to ignoring that offense, one could say that
forgiveness consists of confronting the offense, recognizing it as the wrong that it truly
is, seeking to benefit the offender, and consciously revoking any attempts at revenge. A
person who refuses to forgive hurts himself more than the offender, for the unforgiving
person allows a destructive root of hate and bitterness to grow inside him.
Noise suppression in control theory is similar to forgiveness. A control system that does
not consider noise is incomplete. In fact, noise suppression can be considered as one
of the primary purposes of feedback control. A control system design that ignores the
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1 Introduction

presence of noise might exhibit undesirable oscillatory behavior or even instability. The
system might operate wonderfully in a noise-free environment, but the introduction of
noise could render the system useless. A control system that is designed to perform well
in the presence of noise is like (...) somebody who acknowledges the presence of sin in
the world but does not allow it to ruin him. Just as (...) some deals with that sin in a
constructive and active way, the control system is designed to minimize the effects of
noise.

1.1 Motivation for filtering

C(s) G(s)
u(t)

S(s)

y(t)

N(s)

n(t)

w(t)

r(t) e(t)

yn(t)

−
ym(t)

Figure 1.1: Feedback control loop with controller C(s), system G(s), sensor S(s) and
noise transfer function N(s). Control input r(t), measurement ym(t) and
white noise w(t).

Already out of the philosophical disquisition it can be recognized that sensor noise
and sensor bandwidth play an important role for feedback control systems. To confirm
that, a feedback control loop with controller C(s), plant G(s), sensor S(s) according to
Figure 1.1 is considered. s denotes the complex Laplace variable defined by s = iω ∈ C.
The colored noise1 n(t) arises from the sensor and its environment and noise transfer
function N(s) is usually identified by measurements. The sensor model S(s) and that
of the plant G(s) are both either analytically derived or identified by measurements.
The transfer function of the open loop for the presented case is given by

L(s) = C(s)G(s)S(s) (1.1)

and that of the closed loop by

Try(s) =
C(s)G(s)

1 + L(s)
(1.2)

1 In contrast to white noise w(t) which has theoretically unlimited bandwidth, the colored noise n(t)
is bandwidth limited. White noise only exists theoretically.
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1.1 Motivation for filtering

together with the transfer function of noise w(t) to the position yn(t)

Twyn(s) =
N(s)

1 + L(s)
(1.3)

The two major requirements on the feedback control can be formulated intuitionally:

good tracking of setpoint’s magnitude |Try(s)| ≈ 1 (1.4a)
high suppression of noise |Twyn(s)| ≈ 0 (1.4b)

The phase of the transfer function T (iω), denoted by ∠T (iω) can be obtained by solving
the two trigonometric functions

sin(∠T (iω)) = Im(T (iω))

|T (iω)| , cos(∠T (iω)) = Re(T (iω))

|T (iω)| (1.5)

or as explicitly defined by equation (1.27). The requirements on the feedback control
loop (1.4a) can be refined by additional criterion

∠Try(ω) ≈ 0 (1.6)

and expressed more precisely [19] by

good tracking of setpoint |Try(iω)− 1| � 1 (1.7a)
high suppression of noise |Twyn(iω)| � 1 (1.7b)

over wide range of frequencies 0 ≤ ω ≤ ωh, ωh � 12. For a given configuration according
to Figure 1.1, there is only the freedom to influence Try(s) and Twyn(s) by shaping the
controller C(s) to fulfill the requirements (1.7). By expressing (1.2) and (1.3) with
general poles and zeros and substituting them into (1.7), it can be seen that (1.7a) is
contradictory to (1.7b) in terms of the requirements on C(s) and therefore, (1.7a) and
(1.7b) can not be satisfied simultaneously. Additionally C(s) must stabilize the system
G(s) if it is unstable [19].

The closed loop bandwidth ωb is defined by

ωb = min{ω ∈ R : L(iω) = 1} (1.8)

i.e. where the open loop transfer function firstly crosses the 0 dB value3. One can argue
that by shaping C(s) and thus L(s) the control bandwidth ωb can be shifted towards
higher frequencies. Basically, it is possible, however extending the control’s bandwidth
happens onto costs of the control signals magnitude u(t).

The properties of a satisfying controller C(s) (in respect to the closed loop) can be

2 The notation ε � 1 is used to express ε is a small number, while ω � 1 denotes usually a large
frequency.

3 It can be shown [19], that for each practical system with low-pass character G(s) is strictly proper
and for each realizable controller C(s) is also strictly proper, so ∃ωb : |L(iωb)| = 1
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summarized as

Try(s) ≈ 1

S(s)

Twyn(s) ≈
N(s)

L(s)

⎫⎪⎪⎬
⎪⎪⎭ for ω ≤ ωb

Try(s) ≈ C(s)G(s)

Twyn(s) ≈ N(s)

}
for ω > ωb

Out of the last line it can be seen that the noise w(t) is transferred in full proportion to
the position yn(t) for frequencies above ωb without having any opportunity to influence
it by the controller C(s).

The aim of filtering the signal of a position sensor with transfer function S(s) as part
of a positioning system with actuation G(s) and controller C(s) can be summarized as
follows.

1. For frequencies below ωb positioning accuracy should be increased (possible by
minimizing the effect of sensor noise).

2. Control loop’s bandwidth should be extended until a certain magnitude of u(t)
which is still realizable.

Next to the freedom of controller design, the idea to take more sensors (m pieces)
with transfer functions S1(s) . . . Sm(s) and generally unequal noise transfer functions
N1(s) . . . Nm(s) to profit of benefits of one or other leads to investigate sensor fusion.

1.2 Motivation for sensor fusion

The desired position sensor has high resolution, high bandwidth, high linearity, low
drift and it is robust against change in environmental parameters at affordable price
(Performance criteria).
It is imaginable that one single sensor can hardly fulfill all the listed criteria. This
motivates to fuse sensors’ data in order to emulate an ideal sensor complying the most
of the performance criteria.

Since the measurement of absolute position is far more complex than measuring
displacement (to my knowledge), displacement sensors are widely used and investigated.
Besides that fact of complexity, for lots of applications only the relative position to an
initial position is of interest (displacement). There are several principles to measure
displacement, mostly based on different physical effects. Since different principles
imply different advantages and disadvantages in properties of the sensor based on that
principle, it is obvious to combine (consensually used fuse) the sensors in a way that
mostly advantages of each are dominating after the fusion. Figure 1.2 illustrates the
aim of sensor fusion with some possible displacement sensing principles with typical
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1.2 Motivation for sensor fusion

Figure 1.2: The aim of sensor fusion

properties4. Advantages (+) of each are wished to be own by the fused signal (called
estimation).

Sometimes a single sensor has a bandwidth smaller than required for high dynamic
actuation. Besides it, sensors often suffer from drift and deliver signals superimposed
with noise, however not in equal amounts in general. E.g. one sensor has high drift,
by owning also high bandwidth, compared to another one with low drift and high
resolution at a very limited bandwidth. The aim of sensor fusion is to take advantages
of each sensor by combining (filtering) them individually in order to provide a position
estimation according to the Performance criteria.

4 The reported properties are valid for a given configuration. It is not the essence here to formulate
general statements about a class of sensors. The enumeration should be taken as an example
illustrating the aim of fusion rather than a comparison between sensors.
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1.3 Boundaries of the thesis

The control design is not subject of present thesis as for obtaining PID controllers with
output feedback, or controllers with state feedback designed by either pole placement or
by minimizing a quadratic cost function as the Linear Quadratic Regulator (LQR)5, or
the LQR augmented with a state estimator called Linear Quadratic Gaussian (LQG)6,
or other non-linear controllers7, literature can be studied.

However, the design of Kalman filters are investigated in Chapter 3. Stationary,
time-variant/extended, augmented with noise models, multiple input and various other
types are discussed in Section 3.3. Besides it, other optimal filters such as the H2- and
H∞-filters are discussed in Section 3.4. To accomplish the most of the Performance
criteria for positioning systems (hereinafter only such are of interest) some norm of the
noise transfer function Twyn(s) (1.3) needs to be minimized. A filter which minimizes
the noise energy (2-norm) is e.g. the H2-optimal filter. Others, which are intended to
minimize the noise power (∞-norm) [36] are called H∞-filters. Both are handled in
Section 3.4.4.

Mixed sensitivity filters minimizing a combination of norms are not handled in the
thesis. As well as advanced methods of robust control applied on filtering problems
such as e.g. the robustified Kalman filter [36] are also not handled neither constrained
optimization or probability projection based filters such as the particle filter.

Due to the need for the detailed examination of sensor properties (such as noise
distribution, bandwidth, resolution, etc.) in order to apply any filter, a characterization
of different displacement sensors is presented in Chapter 2. For enabling the argumen-
tation on the language of mathematics, basic concepts of linear dynamic systems and
definitions enabling an evaluation of sensors are presented in Chapter 1, in followings.

1.4 Sensor

A sensor converts a physical quantity to another quantity in the electrical domain. Its
operation is based on (an interaction of several) physical effects. For the design of
experiments, for validation purpose, or for the examination of environmental influences
it is essential to understand the entire operation principle of a sensor. Literature,
wherein mostly theoretical characteristics of sensors are reported, help to design a
measurement system. Experiments need to be made for examining side effects, e.g. for
determining resolution or acquiring drift. Real sensors have always limited bandwidth
and other undesired effects, e.g. increased sensitivity for some frequencies (peaking) or
damping of others (insensibility, notching).

Key parameters of distance sensors are:

• range

5 LQR is an optimal linear controller minimizing the 2-norm of the state estimation error (rather the
mean of the squared error over all frequencies) if all states of a dynamic system are measured (or
accessible).

6 LQG is an LQR controller and an energy-optimal state estimator (Kalman filter) in one.
7 Non-linear controllers might perform better than linear ones, but there is no guaranty in general.
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1.4 Sensor

• bandwidth

• resolution

• drift

• linearity

which can be quantified and which are defined in Section 1.4.1 to 1.4.5. A further
parameter is robustness. It covers the ability to reject the impact of uncontrollable or non-
deterministic environmental parameters, such as of electric, magnetic or electromagnetic
fields of external sources (caused by e.g. a static discharge, mains, lightning or radio
broadcast), ambient light, humidity, etc. It is defined differently for dissimilar sensors.
One can surmise that an electric field mostly disturbs capacitive sensors (at least such
without a shield ring) or ambient light influences optical sensors. Of course there are
sources of disturbance influencing multiple sensors similarly e.g. they can originate
from a common power supply. A summary of effects of electrical noise and precautions
are given in Section 1.4.4.

1.4.1 Range

A definition for the range of measurement for a given sensor is not obvious. Most sensors
have non-linear correlation between input and output. Generally, the limited range with
linear transmission (or acceptable non-linearity) denotes the range of linearity, although
the sensor also delivers some output with noticeable change beyond it (excluding the
range clipping or saturation). In followings, range stays for the total range (unless
otherwise noted) where the sensor delivers any output.

The range is measured in units of meters for displacement sensors. Usually there
is a trade-off between sensitivity and range for some sensors, e.g. for photodiode
based optical proximity sensors. In some configurations, a lower amplification of the
photocurrent (lower sensitivity) increases the range of measurement and simultaneously
lowers resolution and bandwidth, too.

1.4.2 Bandwidth

The bandwidth is identified with the frequency range wherein a sensor is designed to
operate. It is denoted by F = [fl, fc], where fl is the lower limit of frequency (in some
cases 0Hz) and fc is the upper limit. Usually, there are two simultaneous definitions
for fc in context of sensors operating in a control loop.

1. fc is the frequency at half power where the magnitude of power firstly drops
by 10 log(1/2) ≈ 3 dB. It is equivalent to a drop of amplitude to 70.7% since
20 log(1/

√
2) ≈ 3 dB. In this case it is denoted by f−3 dB.

2. Sensors with noticeable dead time mostly causes phase lag ϕ(f). In most cases,
sensors will be used in closed loop with controller and actuator. The frequency
fc is defined at which firstly the phase reserve of open loop ϕr = 70◦ to negative
feedback (−180◦) is consumed. Since amplifiers, actuators and other parts in the
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closed loop also causes phase lag in general and the remaining 110◦ has to be
divided between those and the sensor, i.e. that of sensor is limited de facto to
approximately ϕ(fc) > −30◦ phase lag in the context of this thesis. In this case
the frequency is denoted by fϕ.

1.4.3 Resolution

The resolution of a sensor is a key value for almost all applications in nanopositioning.
Assuming gaussian (normal) distribution of sensors’ noise, the ±3σ-resolution is defined
as the equivalent range in displacement wherein 99.7% of samples fall within [12].
A single value for resolution is always related to a measurement bandwidth. Due
to diversity of applications where sensors are used for measuring dynamic actuation
different bandwidth may be the subject of interest. Therefore, as in [11] wherever it is
possible, resolution is reported versus bandwidth.

The resolution of a sensor is primary defined by electrical noise. A noise density is
directly captured over the frequency by spectrum analyzers. By integrating the density
with respect to a frequency range the band power and also the noise voltage related to
that bandwidth can be obtained (1.12) which is in proportion to the resolution by the
sensitivity factor.

1.4.4 Noise

The resolution of sensors is limited by electrical noise. Intrinsic noise mainly consists of
thermal noise in resistors, flicker (1/f) noise arising from resistance fluctuations in a
current carrying layer, and shot noise caused by generation and recombination processes
in semiconductors. All of the mentioned noise sources are uncorrelated, so the total
noise power8 is

p(t) = v2(t) =
M∑
i=1

v2i (t) (1.10)

where v2i is the theoretical noise power of the i-th (altogether M) noise source.
The huge drawback of acquiring the noise voltage (or noise power) in the time

domain is, that it strongly depends on the measurement bandwidth. Only noise voltages
with the same measurement bandwidth are comparable, and there is no information
about how much it would be lower when limiting the bandwidth of measurement further.
Usually, the density of noise power p(f) is called PSD and it is captured in the frequency
domain in units of power per 1 Hz.It is as useful to acquire the noise power density, as
out of the PSD the noise power and hence, the noise voltage for any bandwidth can be
calculated (which is included in the acquired PSD).
The limited bandwidth of a measurement is denoted by the interval

F = [fl, fu] 0 ≤ fl ≤ fu < ∞ (1.11)

8 It is intended to call a squared noise voltage v2 as noise power p if the reference impedance = 1Ω.
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1.4 Sensor

and the noise power for the measurement bandwidth F denoted by p(F ) is given by
the integral over the density as follows

p(F ) =

∫
F

p(f) df
(1.11)
=

∫ fu

fl

p(f) df (1.12)

p(F ) is also called the cumulative noise power or band power because of its calculation
[12].

To obtain the noise voltage v(F ) linked to the bandwidth F , the square root is
taken

v(F ) =
√
p(F )R (1.13)

with R as the reference impedance. Care should be taken to calculate the noise voltage
with the same R as the power is measured on. To my knowledge, the reference impedance
is often 50Ω. v(F ) is also called the cumulative noise voltage in analogy to p(F ).

Practical considerations

The PSD p(f) is acquired in units of 1W/Hz (SI-units) or logarithmically scaled in
1 dBW/Hz (referred to 1 W) or in 1 dBm/Hz (referred to 1 mW). By taking the square
root of p(f) in units of 1 W/Hz according to (1.13) the noise voltage density (or noise
current density) v(f) in units of 1V/

√
Hz (i(f) in units of 1A/

√
Hz) can be calculated.

As in practice, due to the finite resolution of the acquired PSD, the integral in (1.12)
can be replaced by the sum. Assuming the vectors f ∈ R

N of N frequency points and
corresponding vector p ∈ R

N of N power spectral density points,

f = [fl . . . fu︸ ︷︷ ︸
N

] = [f1, f2, . . . , fN−1, fN ], p = [p(fl) . . . p(fu)︸ ︷︷ ︸
N

] = [p1, p2, . . . , pN−1, pN ]

(1.14)
the following equation summarizes (1.12). . . (1.14) expressing the cumulative noise
voltage v(F ) in units of 1 V out of the PSD measurement in SI-units of 1 W/Hz

v(F ) ≈
√√√√N−1∑

i=1

pi R (fi+1 − fi) (1.15)

with linearly or logarithmically spaced vectors f and p. It is advisable to chose the
logarithmic spacing when the noise voltage is plotted versus the logarithmic frequency
axis to have an even density of information. An efficient way to compute (1.15) can be
done by the cumulative sum function cumsum() in Matlab9.
The conversion between typical units of the PSD can be accomplished with the following
correlations

p(F )
∣∣
dBm⁄Hz

= p(F )
∣∣
dBW⁄Hz

+ 30 dB = 10 log(p(F )
∣∣
W⁄Hz

) (1.16)

p(F )
∣∣
W⁄Hz

= 10
p(F)|dBm⁄Hz

10 10−3 = 10
p(F)|dBW⁄Hz

10 (1.17)

9 Matlab (Mathworks, Massachusetts, USA)
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Regarding the information content, the density (either of power or of voltage) plotted
over the frequency gives an impression of the spectral distribution of noise, as the
frequency and magnitude of single-frequency disturbances are separable10, which effect
the measurement. However, the cumulative noise voltage (1.15) of a sensor, is in
proportion to its resolution by the so called sensitivity factor.

Challenges

Especially the very low frequency part of flicker noise (approximately below 3Hz)
contributes to limit the resolution and it is very time-consuming to acquire adequately.
Moreover, it cannot be totally separated from drift.

1.4.5 Drift

Drift is a comparatively long-term change of a sensor signal. It may be unidirectional
or periodic. If such a change is observable at constant and homogeneous temperature
distribution (∇ϑ = const.11 in time) temperature drift is excluded. In this case drift
is assumed to arise from other sources than a change in temperature. E.g. for lots of
sensors aging produces also a drift on a long-term scale. A drift is commonly measured
in the time domain at constant temperature (de facto with temperature recording) over
several hours to days and reported as peak-to-peak value with respect to the acquisition
time range.

To determine the temperature drift of a sensor system, it gets uniformly heated up
and cooled down by simultaneously recording the sensor’s signal v = [v1, v2, . . . , vn]

T and
the temperature ϑ = [ϑ1, ϑ2, . . . , ϑn]

T . The change in the sensor’s signal and the change
in temperature are compared and in case of a high correlation e.g. | corr(v,ϑ)| > 0.95
the temperature dependence TD can be given e.g. in units of 1V/◦C12.

Methodology

Long term recordings of voltages and currents are made using multiple 6.5 digit
multimeters with logging capability as the TrueVolt® 34461A13. They are taken because
of having a high resolution of 1μV (at 0.25Hz BW), sampling rates from 10Hz down
to 1/60 Hz by storing 104 samples over 16 minutes to almost 7 days, optional filters for
mains, auto zero comparison, synchronization capability, etc.

1.5 External disturbances

In addition to intrinsic noise sources (as summarized in Section 1.4.4), there is a variety
of non-essential noise sources of external disturbances, often recognizable on PSD
measurements. These are typically the power line and its harmonics (usually dominant
below 1 kHz), AM broadcast stations at several 100 kHz, FM and TV broadcast at

10 Often external disturbances, such as mains and its harmonics, appear as spikes on the spectrum.
11 ∇ denotes the gradient of some quantity in directions of space.
12 However, correlation does not imply causation in general.
13 Agilent Technologies, Santa Clara, CA, USA
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1.5 External disturbances

several 100MHz or even radar at some GHz [39]. Some of these are as distinct that
they appear in a spectral measurement above the intrinsic background noise as e.g.
spikes of mains and its harmonics with up to +10 dB (in power) above noise floor for
strain gauge sensors as shown in Figure 2.18. There are several ways to lower the effect
of these non-essential noises, summarized in followings (based on hints in [39]).

1. A voltage of an isolated equipment or an operator can couple to a sensor via small
stray capacitances. Therefore, voltages should be measured with low impedance
and currents with high impedance. An additional metal shielding connected to
earth lowers the entering of travelling charges to the sensitive circuit and thus, it
lowers capacitive coupling.

2. A rapidly changing current in a nearby circuit or mains alternating current
produces a magnetic field which induces a voltage in surrounding conductors
according to law of induction. To lower the effects, either parallel wires close to
each other (this configuration reduces the area of the pick-up loop), or twisted
pair wires (it alters the orientation of pick-up loop and induced currents cancel out
each other), or coaxial cables (effect of cage of Faraday), or perhaps a magnetic
shield (for high frequency even a thin metal enclosure is adequate due to the
Skin-effect) should be used.

3. By allowing parallel paths (distributed in space) for a current to flow, a huge pick-
up loop (ground loop) can be formed enabling induction of currents. These currents
cause a voltage drop on a wire with finite conductivity, which is superimposed to a
signal. This can happen e.g. by the unwanted earthing of the same potential of a
circuit at multiple locations. Therefore, grounding at one single point (stair-point)
should be used.

4. Microphonics provides a path for mechanical noise to appear as electrical noise
in a circuit [39]. The capacity of a coaxial cable is a function of its geometry so
mechanical vibrations are transformed into the electrical domain.

5. Voltage created by dissimilar metal junctions (as used in thermocouples) can
falsify measurements by adding varying voltages depending on environmental
parameters.

One can see how careful a measurement needs to be done in order to provide repro-
ducible results. In practice it is impossible to consider everything what influences the
measurement. The only way to overcome the problem is to assess the effect of the one
and other. An analytical investigation by keeping a close eye to the neglected effects is
indispensable.
Next to the properties of sensors, their usage is illustrated in one emphasized application
in the field of nano-positioning, in followings.
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1.6 Atomic Force Microscopy

Figure 1.3: Operation principle of an Atomic Force Microscope (AFM) [9]

An Atomic Force Microscope (AFM) allows to image topography of a sample even
on the atomic scale. Individual molecules’ position, shape, charge and other properties
can be acquired with resolution comparable to electron beam microscopy with much
less effort in sample preparation [9].

It differs from optical microscopes since it does not acquire an image by focusing
light onto a surface. Inside an AFM a very sharp tip approaches the surface of the
sample. This tip is mounted on the free end of a one side chucked flexible cantilever.
The attractive and repulsive forces interact with the tip on atomic level, bending the
cantilever. As illustrated in Figure 1.3 the deflection of the cantilever can be measured
by the optical beam deflection method (containing a laser source and a photodiode array
detector). By the lateral moving of the sample together with the deflection information
of the cantilever a three dimensional map of the sample’s topography can be acquired.

In order to produce the lateral moving scanner tables (positioning stages, nano-
positioners) are needed with actuation ranging from several nanometers to hundreds of
micrometers in multiple directions at high speeds and at high accuracy. It is a key issue
to measure position or displacement with very low time delay at high bandwidth for
closed loop nanopositioners [12],[48], although there exist some positioners operating in
open-loop without a need for a feedback [20], [47].
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1.7 Dynamic system

1.7 Dynamic system

A Linear Time Invariant (LTI) Single Input Single Output (SISO) dynamic system
can be represented in continuous time with n differential equations of first order in the
state-space representation

ẋ(t) = Ax(t) + bu(t) (1.18a)
y(t) = cTx(t) + du(t) (1.18b)

with state vector x(t) initial conditions x(0) = x0, time derivatives ẋ(t) = ∂x(t)/∂t,
one-dimensional input u(t), one-dimensional output y(t) and matrices of appropriate
dimension, system matrix A ∈ R

n×n, input matrix b ∈ R
n, output or measurement

matrix cT ∈ R
n and feed-through matrix d ∈ R can be written14.

Parameter t denotes time dependence equivalent to subscript k for time discrete systems.
Matrices with lack of both are constant in time, called LTI.

1.7.1 Transfer function

The Laplace transform is defined by the bijective one-side integral transformation

X(s) = L(x(t)) =
∫ ∞

0

x(t)e−st dt, s = iω ∈ C (1.19)

which transforms the real time signal x(t) into the complex frequency plane X(s) [19].
By Laplace transforming (1.18), expressing X(s) and substituting (1.18b) Y (s) can

be written
Y (s) = cT (sI−A)−1x0 +

(
cT (sI−A)−1b+ d

)
U(s) (1.20)

with U(s) = L(u(t)), Y (s) = L(y(t)) as Laplace transformed of input and output
respectively. G(s) denotes the transfer function of (1.18) since

G(s) =
Y (s)

U(s)
= cT (sI−A)−1b+ d (1.21)

with identity matrix I. It is the representation of the relation between input and output
of an LTI system with zero initial conditions x0 = 0 and it is for many practical systems
a broken rational function. For every system given in state space representation (1.18)
transfer function G(s) according to (1.21) can be expressed, although, generally not the
opposite way.

14 Superscript T denotes transpose of a matrix, bold capitals (A) indicates matrices, bold lower case
symbols (b) denotes column vectors (cT row vectors) and italic letters (u) are representing scalars.
The notation to indicate that real valued matrix M has g rows and h columns by assigning it
as element of space of real numbers of dimension (g × h) denoted by M ∈ R

g×h is legal if some
conditions about its eigenvalues [19] are met.
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A broken rational transfer function

G(s) =
b(s)

a(s)
=

q∑
i=0

bis
q−i

r∑
i=0

aisr−i

(1.22)

with polynomials b(s) and a(s) is called proper if the order of nominator q and order
of denominator r satisfy condition q ≤ r. G(s) is strictly proper if q < r which is a
convenient property in some cases, it excludes a direct feed-through of input to output
(d = 0 in state space realization). It is consensual to realizable.

Poles p of the transfer function G(s) are zero places of the characteristic polynomial
of the system, p = {s : a(s) = 0} ∈ C, while zeros of transfer function G(s) are zero
places of nominator polynomial z = {s : b(s) = 0} ∈ C, respectively.

Eigenvalues of the matrix A are poles of the system p = eig(A). Eigenvalues are
the solution of the equation det(A− sI) = 0 where det(·) denotes the determinant of
a square matrix. Next to the evaluation of eigenvalues of the system in state space
realization (1.18), the corresponding transfer function (1.21) can be visualized on a
Bode diagram15.

A dynamic system is called bounded-input bounded-output stable or BIBO stable if
corresponding transfer function (1.22) has only poles in the Left Half Plane (LHP), i.e.
poles with negative real part Re(p) < 0.

A transfer function is called non-minimal-phase if at least one zero with positive
real part ∃zi : Re(zi) > 0 exists. This property implies that the step response shows
an initial reversed answer than the excitation signal, which is in case of sensors mostly
undesired.

Rating of transfer functions

Sometimes it is required to quantify the variability of a transfer function. Hence, a
norm has to be defined. The infinity-norm (denoted by ‖·‖∞) of a transfer function
G(s) expresses the maximum of magnitude over all frequencies ω (in absolute values)

‖G(iω)‖∞= max
ω

|G(iω)| (1.23)

The variability of a transfer function, denoted by the Δ operator, is defined as the
difference between its maximum and minimum for a limited frequency range F = [f1, f2]
according to

ΔG(F ) = 20 log
(‖G(iω)‖∞ ‖G−1(iω)‖∞

)
,

( ω

2π

)
∈ F (1.24)

in units of 1 dB, assuming that G−1(s) = 1/G(s) exists (G(s) must be a broken rational
function (1.22), however G−1(s) does not need to be realizable ≡ strictly proper). Figure
1.4 illustrates the relations.

15 after Hendrik Wade Bodé
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Figure 1.4: Illustrative example to definition of transfer function’s smoothness

A transfer function T (s) is called ideal in the context of sensors, in the frequency range
F if

T (iω) ≈ const. ∀ω :
( ω

2π

)
∈ F ⇐⇒ ΔT (F ) � 1 dB (small) (1.25)

1.7.2 Bode diagram

A Bode diagram consists of two plots below each other. On the upper one, absolute
values of the magnitude of a transfer function are plotted

G(f) = 20 log(|G(s)|), s = i2πf G(f) in units of 1 dB (1.26)

versus a logarithmically scaled frequency on the ordinate (horizontal axis), in units of
1 Hz. The phase is given by the four quadrant inverse tangent refining (1.5) to

ϕ(f) = atan2(x, y)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(y/x) x > 0

arctan(y/x) + π y ≥ 0, x < 0

arctan(y/x)− π y < 0, x < 0

π/2 y > 0, x = 0

−π/2 y < 0, x = 0

undef. y = 0, x = 0

(1.27)

with x = Im(G(s)) and y = Re(G(s))

It is drawn in the lower plot versus the same logarithmically scaled frequency axis, as
can be seen e.g. in Figure 1.4. In case of sensors, the transfer function is commonly
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1 Introduction

interpreted as sensitivity over the frequency.
One real pole in the Left Half Plane (LHP) (p < 0) causes a slope of transfer

function’s magnitude by −20 dB/decade of frequency increase above 2π|p|Hz, while
LHP poles with multiplicity of m causes a slope by −20m dB/decade. However zeros z
with multiplicity m causes a rise of transfer function’s magnitude by +20m dB/decade
above 2π|z|Hz.

Considering only the phase it can not be stated whether the change by −90m ◦

(phase lag) is caused by an LHP pole or Right Half Plane (RHP) zero as well as it is
not clear whether the change by +90m ◦ (phase lead) is coming from a RHP pole or
LHP zero of multiplicity m, respectively. As consequence, it can be concluded, that
the Bode diagram does not acquire whether a system is BIBO-stable or not, this can
be seen e.g. out of the step response in the time domain or by the evaluation of the
corresponding poles in state-space realization.

Methodology

Acquiring Bode diagrams can be done directly using a system analyzer (rather than
recording signals in time domain). The system analyzer measures the root mean
square (RMS) of the sensor’s output in a varying narrow frequency band (resolution
bandwidth RBW) while exciting the system with a sine of increasing frequency at
constant amplitude. For presented Bode diagrams a network analyzer HP439516 is used
in swept sine mode.

Attention needs to be taken for each component of the overall system to excite
only one frequency at a time. In general, due to non-linearity of components such
as amplifiers or actuators the Total Harmonic Distortion (THD) is acquired in some
cases and the expressiveness of the Bode diagram is characterized by it. For some
characterized sensors, especially at high frequencies power spectrum of third and fifth
harmonics are suppressed by 7. . . 10 deciBels to carrier (dBc) only. In such case the
presented transfer function should be taken with care, since it does not describe the
real (non-linear) behavior of the (assumed) linear sensor anymore.

Transformations

A time signal g(t) is related to its spectral representation G(f) by the linear bijective
Fourier transform defined by

G(f) = F(g(t)) =

∫ ∞

−∞
g(t)e−i2πft dt (1.28)

In the case g(t) is the impulse response of a sensor, G(f) is its transfer function. Both
hold the same information. The transformation is denoted by g(t) � �G(f). Table
1.1 summarizes other important correspondences17.

The continuous Fourier transform (1.28) converts the time domain signal g(t) of
infinite duration into a continuous spectrum G(f) composed of an infinite number of
sinusoids. For real-valued time signals the spectrum is symmetric around 0 frequency,
16 former Hewlett Packard, Agilent Technologies, Santa Clara, CA, USA
17 The distribution δ(f) denotes the Dirac delta function

16



1.7 Dynamic system

so G(f) holds no new information for f < 0. This, and practical considerations, such
as the finite signal duration motivates to use the Discrete Fourier Transform (DFT)
instead of (1.28). The finite length time signal gk, k = 0, 1, . . . N − 1 is transformed
into the complex, discrete frequency domain by the N -point DFT

Gk =
N−1∑
l=0

gke
−i2πlk/N (1.29)

which is usually computed by the M -point Fast Fourier Transform (FFT) for M =
2N

+
> N . Usually, some windowing function (e.g. the hanning window) needs to be

taken to pretend no periodicity for a transient signal, and the technique of zero padding
is used to achieve higher spectral resolution (M/2 frequency points instead of N/2).

time domain frequency domain

1 � �δ(f)

δ(t) � �1

rect(t) � �
sin(fπ)

fπ

tri(t) � �
sin2(fπ)

fπ

sin(2πf0t) � �
1

2i

(
δ(f − f0)− δ(f + f0)

)
Table 1.1: Fourier correspondences [19]
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CHAPTER 2

Sensor characterization

In order to validate analytically known models of sensors and to investigate major
influences of environment, an actuator has to be taken to which sensors can be aligned
in order to measure displacement as illustrated in Figure 2.1.

balance piezo actuator

sensor
s0

s1

Figure 2.1: Test setup consisting of piezo actuator (on the one side fixed to a balance
with large mass) with an actuated platform mounted on it (red indicated
plate) and a fixed displacement sensor (symbolically an optical proximity
sensor) measuring displacement s1 − s0.

2.1 Test setup

For an expected sensor bandwidth of 200 kHz and above [17], low-mass high-stiffness
piezoelectric actuators (commonly known as Lead Zirconate Titanate (PZT) actuators
or piezos) are investigated, because they are supposed to be able to excite the platform
at such high frequencies by several hundred nanometers at least. The configuration in

18



2.1 Test setup

Figure 2.1 is not the only possible arrangement of sensor and its counterpart1, it illus-
trates only one possible method of displacement measurement using optical proximity
sensors.

The piezoelectric effect2 can be observed as an electric potential in response to
compression of an anisotropic quartz crystal, such as PZT. The inverse effect, when
applying a voltage on electrodes of such crystals, an elongation or contraction occurs
which is the principle of piezoelectric actuators. Similar to the materials that permanent
magnets are made of, molecules of piezoelectric materials with the same polarization
direction are grouped in Weiss domains. For manufacturing piezoelectric materials the
Weiss domains are aligned in a high electrostatic field and remain in this while cooling
them down from above the Curie temperature to room temperature, in order to get a
remnant polarization. Therefore, when using PZT actuators, care should be taken not
even to approach Curie temperature because depolarization occurs and actuators are
destroyed [17].

2.1.1 Mechanical considerations

Ceramic materials, such as PZT of which piezoelectric actuators consist of, have a very
high stiffness, in order of 200N/μm for the NAC20253. Thus, they transmit vibrations
of the balance to the platform and vice versa. Due to the own mass of the actuator,
which is also partly accelerated during actuation, remarkable forces are induced into the
balance while driving the actuator especially at high frequencies. If the balance is not
able to damp excitation forces adequately, they get reflected and are superimposed in
the actuator causing resonances. For a piece of aluminium acting as balance, it turned
out that many resonances over a wide frequency range occur, i.e. the frequency response
of the actuator is superimposed with peaks (nodes and anti-nodes), as it can be seen in
Figure 2.2. The figure compares the same actuator NAC2025 mounted consecutively on
two different balances. These two are

1. a piece of aluminium bar with
(40× 40× 535) mm size and 2.31 kg weight

2. and a heavy granite stone with
(35× 15× 50) cm size and 71 kg weight.

It can be clearly seen in Figure 2.2 that taking that of granite (2) brings benefits if low
order models have to be fitted to the recorded frequency response.

The granite balance suppresses the excitation forces of the piezoelectric actuator
sufficiently. The first resonance mode of the piezo is observable at 41 kHz with +10 dB
raise and higher modes at ≈140 kHz and ≈300 kHz. Residual vibrations of the balance

1 Also the sensor can be actuated and its counterpart can be fixed. Usually magnetic sensors are
less heavy than the permanent magnet or coil which acts as source of magnetic field, therefore
sometimes the sensor is actuated.

2 Observed by Pierre Curie in 1880 [26]
3 Noliac, Berlin, Germany.
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Figure 2.2: Frequency response of the piezoelectric actuator NAC2025 (voltage to
displacement) on different balances.

are at least 30 dB damped for f < 40 kHz as it can be seen in Figure 2.6. The
theoretical maximal force seems to be as high as F = 390N at A = 10 nm displacement
at f = 1MHz frequency with m = 1g of actuated mass and acceleration according to
a = A(2πf)2 sin(2πft) which might be the reason for the excitement of granite block
due to 1/71000 mass ratio.

With a maximum of stationary deflections of 8 . . . 20μm [43] stacked piezos (Figure
2.4) have first resonance frequency (ω =

√
k/m) in the range of 150 kHz to 30 kHz

depending on their mass m and stiffness k. Measurements confirm that piezo excites
the balance during actuation. The energy of oscillation is partly introduced into the
balance, propagates as a longitudinal wave and gets reflected from the counter-side
(parallel plane to that where the piezo is mounted on) while getting damped (as outlined
in [17] and partly in [10]).

On the one hand, it can be shown empirically that the material, the shape and
dimensions of the balance influence how many resonances with which magnitude occur.
On the other hand, the connection between piezo actuator and balance plays a role.
There is a widespread literature about how to glue optimally a PZT actuator on
different surfaces [17], [48]. It can be observed, that major differences in the number,
position and magnitude of resonances evolves depending on the glue which was used to
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2.1 Test setup

Figure 2.3: Stacked piezo actuators of different manufacturers prepared for characteri-
zation by a vibrometer

Figure 2.4: Stacked piezoelectric actuator NAC2025 consisting four elements in mechan-
ically serial and electrically parallel connection. Dimensions (5×5×10)mm.

fix the actuator to the balance. According to my observations,

1. a glue with low stiffness (soft glue) adds additional damping to the frequency
response and produces fewer and less distinct resonances. The first dominant
resonance of the piezo (ω ≈ √

k/m) is shifted towards higher frequencies. Soft
glues are e.g. a double sided adhesive tape or e.g. Palmatex.

2. A glue with high stiffness (hard glue) tends to damp resonances fewer. The first
resonance mode of the piezo is shifted towards lower frequencies. Hard glues are
all thin-film glues, especially instant adhesives, cyanoacrlyate adhesives or epoxy
glues.
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2 Sensor characterization

Longitudinal wave theory

Theoretical considerations with sound or pressure waves (identical) show that although
only small differences in material parameters between aluminium and granite persist,
especially propagation speed for pressure waves cp shows a remarkable difference as
can be taken from Table 2.1. cp should be related for the same sized balances inversely
proportional to its eigenfrequency and thus to resonances observable on the piezo.
The larger and longer the balance, the lower the eigenfrequency and coincidentally
resonances measured on the free end of the piezo are less distinct which is desired and
can be observed. This is assumed to happen while the wave is propagating over a longer
path while it is getting damped. The increased mass of the balance might probably not
be neglected, too. cp and cs are the propagation velocities for pressure and shear waves,
respectively. They are given for a homogeneous three-dimensional solid by

cp =

√
K + 4

3
G

ρ
, cs =

√
G

ρ
(2.1)

with bulk modulus of the elastic material K, which describes the material’s resistance
to uniform compression (K = ρ dP/dρ) [45]. Next to granite, concrete is of interest
due to the lowest cp of materials listed in Table 2.1.

A detailed modelling of the stacked piezo actuator and especially the glue layer
between the balance and the actuator either or both numerically by Finite Element
Method analysis (FEM) or analytically by solving Partial Differential Equations (PDE)
of distributed springs and mass elements deflects the focus of the thesis.

material ρ (kg/m3) E (GPa) G (GPa) cp (m/s) cs (m/s)

aluminium 2700 70 25.5 6317 3073
granite 2650..2750 60..66 26 5117..5467 2180..2254
steel 7750..8050 210 79.3 5847..5959 3139..3199

concrete 2240..2500 30..48 15..27 3651..4880 1753..2719

Table 2.1: Mechanical parameters of some materials: specific density ρ, Young’s modulus
E, shear modulus G, propagation velocity for shear waves cs and for pressure
waves cp (taken from [25], [45])

2.1.2 Amplifier

The simplest model of a piezoelectric actuator is a capacitor Cp where the voltage
across it vc corresponds to its elongation [20]. In order to drive a stacked piezoelectric
actuator up to the maximum of its elongation several hundred Volts are necessary,
which is provided by amplifier. Unfortunately, amplifiers have a finite output resistance
Ro which forms with the capacitance of the piezo Cp a first-order low-pass filter, as it is
modeled in Figure 2.5. vc becomes lower with increasing frequency while simultaneously
current ic increases until a certain limit caused by the amplifier.
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2.1 Test setup

vi

Ro

C

ic

vc

Figure 2.5: Equivalent circuit of a voltage amplifier
and a piezoelectric actuator

At typical nominal parameters Ro = 50Ω (WMA-300 high voltage amplifier4) and
Cp = 400 nF (NAC2025 10 mm long stacked piezo) the cut-off frequency (−3 dB) is as
low as

fc =
1

2πRoCp

= 8kHz (2.2)

The actuator is wished to be driven at constant amplitude of voltage v0 over wide
frequencies,

vc = v0 cos(ωt) + v0 (2.3)

as the voltage vc is in good proportion to the elongation of the piezo above a lower
frequency limit, however below that the effect of creep dominates (generally, the electri-
cal charge in the actuator is in good proportion to its elongation over a wide range of
frequencies [17]). As this is de facto not possible due to the limited bandwidth of the
amplifier (detailed explanation in Section 2.1.2), the frequency response of the total
system (amplifier and actuator) is measured by a sensor which is considered as ideal
(reference measurement). The system’s frequency response is corrected than by the
reference measurement afterwards to pretend as if the actuator would be excited at con-
stant amplitude of voltage over a wide range of frequencies. The reference measurement
is provided by a vibrometer OFV-5000+OFV5345 based on the optical Doppler-effect,
hereinafter called vibrometer.

Because of the low pass model (Figure 2.5) the transfer function of the actuation
(consisting of the amplifier and the piezoelectric actuator) from voltage vi to the displace-
ment measured by the vibrometer, shows for the driving voltage vi(ω) = v0 cos(ωt) + v0
with constant amplitude and offset v0 = 25V, in the frequency range [2 kHz, 1MHz] a
decay of −20 dB/decade superimposed with resonances of the piezo as it can be seen by
the red colored frequency response in Figure 2.6. The first resonance mode is observable
at fr1 = 41 kHz.

The green colored response represents the vibrations of the granite balance, acquired
by the vibrometer, too. There are possibly different sources of influence why the last
one is not evenly low, close to the lower limit of the used network analyzer HP4395
with a dynamic range of 100 dB. At low frequencies F1 = [10Hz, 500Hz] some peaks
up to 30 dB variability (ΔT (F1) = 30 dB according to definition (1.24)) are observable,
originating possibly from a resonating environment. In the middle frequency range

4 Falco Systems BV, Amsterdam, The Netherlands
5 Polytech, Waldbronn, Germany.
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2 Sensor characterization

F2 = [4 kHz, 11 kHz] resonance and anti-resonance pairs (nodes and antinodes) are
present causing the pattern visible repetitivly in the frequency response. The isolation
(defined as damping of excitation forces initiated by piezo actuator) can be read out as
difference between the two responses, and it lowers with increasing frequency, particularly
it is 28 dB at fr1 where the first resonance mode of the piezo occurs.
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Figure 2.6: Frequency response of the actuation system (including amplifier and piezo-
electric actuator) as well as the vibrations of the granite block.

Despite all of the above mentioned imperfections the granite block is used as balance
for mounting piezo actuators on it. Usually, in AFMs there is far less counter-mass to
damp excitation forces initiated by actuators, although displacement is referred to a
relative coordinate system which might resonate relative to the base (inertial system).

2.1.3 Non-linearities

Piezoelectric materials show creep after changing the applied voltage, i.e. during the
period when the voltage is already constant. It is noticeable in a slow drift of the
elongation. It is in order of 1 to 2% each time decade of elongation within 100ms
(logarithmic settle), so after a few hours the displacement can be as large as 10% of
the total displacement [26]. Its origin is supposed to be molecular friction [17]. For
characterizing sensors by using piezoelectric actuators, care has to be taken to exclude
frequencies below several Hertz to exclude the effect of creep.

It can be minimized further by controlling the charge of the piezo during actuation
(charge controlled amplifier), however as long as a reference measurement can be done
using a vibrometer, sensor characterization is also possible using voltage amplifiers.
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2.2 Data Acquisition

However, it should be noted that besides the drift of the actuator the vibrometer is also
afflicted with drift because of its operation principle. Basically, a vibrometer uses the
optical Doppler effect for velocity measurement, however the position is not determined
by integration but by fringe counting. To my knowledge there are uncertainties in this
method and also thermal issues causing a drift.

It can be observed, that non-linearities (quantified by the THD) can be lowered
further by exciting the piezo less than 20% of nominal voltage, de facto ≈ 30VPP ≈
10VRMS. This restriction reduces actuation by 80 % and unfortunately Signal to Noise
Ratio (SNR) drops by 16 dB. So it becomes more difficult to acquire sensor dynamics
particularly at high frequencies, where additional attenuation from piezo actuator also
happens (see Figure 2.2).

2.2 Data Acquisition

For converting analogue signals of different sensors to a digital data an ADC type
AD79856 has been chosen. This successive approximation ADC with 16-bit resolution
capable to sample up to 2.5 Mega Samples Per Second (MSPS) has a conversion time
of tconv = 320 ns only.
In order to implement data fusion (filters, offset correction, sensor multiplexing, etc.)
a 32-bit ARM Cortex-M4 processor based microcontroller the STM32F4077 with a
Floating Processor Unit (FPU) with 210 Mega Instructions per Second (MIPS) @
168MHz is used. The interconnection of elements of the data acquisition system is
shown in Figure 2.7.

vin+ AD7985 STM32F407 PC/Matlab
SPI UART

Figure 2.7: Data acquisition system consisting of an ADC (AD7895) which digitizes
the analogue signals, a real time processing system (STM32F407) which
executes filtering algorithms and a PC with data evaluation in Matlab.

2.2.1 Analog to Digital Converter

The ADC and the Processing System (PS) (STM32F407 microcontroller) are intercon-
nected by the Serial Peripheral Interface (SPI) bus. Only the ADC (bus slave) transfers
data to the PS (bus master) after initialization has been done. The master reads 16
bits of conversion result with a delay of td1 = 182 ns within ttr = 381 ns at the highest
possible clock frequency of the PS at fclk = 45MHz = 16/ttr according to Figure 2.8.

6 Analog Devices Inc., Norwood, Massachusetts, USA
7 STMicroelectronics N.V., Genf, Switzerland
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2 Sensor characterization

Figure 2.8: Timing diagram of the ADC on the SPI bus

Due to the fact, that the AD7985 transmits the previous conversion result at actual
trigger, the total delay makes ttot = 1.56μs at fs = 1/Ts = 1MHz = 1 MSPS sampling
rate with the presented architecture.

The theoretical closed loop bandwidth can be as high as

fcl =
1

10

1

ttot

∣∣∣∣
AD7985

= 64 kHz

by assuming 10 samples per cycle of a sine
for proper interpolation as adequate (5 times
more than the Nyquist sampling).

(2.4)

It is verified on the present PS, that the task to compute the Kalman filter for a third
order model of actuation makes a closed loop bandwidth of only fcl = 50 kHz possible
for the assumption (2.4). To compute a Multiple Input Single Output (MISO) Kalman
filter of fifth order model (as presented in Section 3.3.3 with two sensors) fcl drops to
10 kHz for the same assumption (2.4).

According to the data sheet of the ADC [4] the theoretical lowest delay ttot = 500 ns
could be achieved at fclk = 84.2MHz implying an fcl = 200 kHz. The STM32F407 PS
with max(fclk) = 45MHz clock of the SPI bus and present implementation of software
(using the standard peripheral library of STM in the program language C) reduces fcl
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2.2 Data Acquisition

by a factor of 4 at least8 compared to an implementation on a Field Programmable Gate
Array (FPGA) where mostly only the delay of ADC and data transmission counts9.

By using STM32 there is almost unlimited flexibility in shaping and adapting filters
and tuning the fusion algorithm, even during operation. The wide variety of standard
peripheral interfaces included in STM32 and its simplicity in programming compared
to e.g. a Xilinx FPGA and the description language VHDL allows a comparably
short development time. Although FPGAs are more suitable for real time filtering
and control tasks and they are used, to my knowledge, in high-end applications or
in standard products sold in large quantities where the development time is justified,
but even in individual applications where excessive computation is needed, such as by
implementing a moving horizon observer as in [29], the effectiveness of filtering can be
shown using the microprocessor STM32F407 capable up to 210 MIPS.

Triggering

The triggering of a conversion can be initiated by

(a) the PS internally via a timer, at sampling rates in range [0, 1]MHz

(b) externally at any frequency in range [0, 0.8]MHz

Option (b) is useful for supernyquist sampling (undersampling), which is used to
mix down the frequency of the measurement to the base-band when using an AC-
measurement bridge. This is equivalent to an envelope detector. By using a second
ADC triggered at 90◦ phase shift to the first ADC, an IQ-demodulator can be built,
providing in-phase and quadrature components, as if a lock-in amplifier would be used.

Universal Asynchronous Receiver/Transmitter

As indicated in Figure 2.7 the data transfer between PS and the personal computer
(PC) or notebook with Matlab installed on it, is not time crucial anymore. It is
realized with asynchronous bit transfer at 115200 bits/s over a TTL to a virtual-COM
adapter. Data is recorded in Matlab without an additional software interface, based
on the standard java input/output methods and functions on which Matlab is based
on. The reading from a standard serial input can be done more effectively by addressing
the appropriate ports directly by an executable, e.g. compiled from a C-code on the
used operating system.

2.2.2 Signal conditioning

In order to use the full input range of the ADC, in the present case 0V ≤ vin+ ≤ 4.095V
with sensors of different range of output voltages (mostly symmetrical, non-differential)

8 The amount of performance degradation depends on the additional control algorithm.
9 By assuming no comparable delay in saving/buffering of the data in connection with ADCs sampling

at several MHz. However if the ADCs are sampling at several hundreds of MHz or even at several
GHz probably conversion delays (serial to parallel) dominates.
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2 Sensor characterization

and to avoid a voltage drop due to capacitive input currents into the ADC a high-
frequency ultra low-offset operational amplifier AD802110 is used in a non-inverting
summing stage configuration as it can be seen in Figure 2.9 with parameters in Table
2.2.

vref

R1

vin

R2

−

+

+5V

-5V

vq

R3

R4

R5

vi+

C1

Figure 2.9: Signal conditioning circuit

R1 R2 R3, R4 vref vin R5 C1

20 kΩ 5 kΩ 10 kΩ 4.096 V [−1, 1 ]V 18Ω 3 nF

Table 2.2: Parameters of analogue circuit for data acquisition

Due to the non-ideal behavior of the summing circuit a small peaking (up to 10 dB)
is always present as it can be seen around 4.5MHz in Figure 2.10. To provide equal
gain and as few phase lag as possible up to 1MHz, R5 and C1 are chosen to from a
first order low-pass filter with a cut-off frequency of f−3 dB = 5 MHz. Only in the case
when the Nyquist theorem can not be guaranteed an additional anti-aliasing filter is
connected with fc < 500 kHz.

2.2.3 Performance of conversion

A histogram of ADC values captured over more than 6 seconds confirms a non markable
drift of the signal conditioning circuit during that time, as can be seen in Figure 2.11.
Moreover, the assumption over a normally distributed noise of the Data Acquisition
(DAQ) including the signal conditioning circuit is affirmed, since the quantization noise
of the ADC would be uniformly distributed. The ±3σ-resolution of the DAQ is 2.31 mV
for 20× 103 samples and a sampling rate of 3 kSPS.

When applying a sine with frequency of 10 kHz from a high performance signal
generator11 to vin the non-linearity of ADC with the analogue circuit (Figure 2.9) can
10 Analog Devices Inc., Norwood, Massachusetts, USA
11 SDG5162, Siglent Technologies Europe GmbH, Hamburg, Germany
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Figure 2.10: Transfer of the analogue signal conditioning circuit. L(vi+(t))/L(vin(t)).
Parameters as in Table 2.2.

be measured and compared to that in the data sheet. The THD (as shown in Figure
2.12) calculated out of the fundamental and the first 5 harmonics shows a value of
−66 dB which verifies that acquisition system performs as desired. THD over frequency
is reported in [4].
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Figure 2.11: Histogram of the quantized voltage at vin = 0V computed out of 2× 104

samples sampled at 3 kHz, other parameters as in Table 2.2.
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2.3 Strain gauges

2.3 Strain gauges

Figure 2.13: Photo of strain gauge foil (taken from [16])

2.3.1 Operation principle

Strain gauges consist of a thin isolating foil with meander-shaped resistive layer on
it as illustrated in Figure 2.13. By stretching them along the sensitive direction they
increase resistance in order of 0.1 %.

R1

R2

R3

R4

vc vd
vq

vs

R3

R4

vd
q

R1

R2

vc
v

Figure 2.14: Strain gauges in Wheatstone bridge with active elements R1 and R4,
pairwise placed sidewards on the stacked piezo actuator, with supply
voltage vs and bridge voltage vq.

Figure 2.14 and 2.15 shows the configuration which can be used when strain gauges
are applied to piezoelectric actuators. A Wheatstone bridge with two active elements
R1, R4 and two fix valued R2, R3 is used12. An equal change in resistance of the active
elements is mapped in the bridge voltage vq. The passive elements (fix valued) are not
sensible to strain (since they are perpendicular to the direction of actuation) however
they have the same temperature coefficient as active elements to ensure no change
12 From now on, the term strain gauge or strain gauge sensor refers to the Wheatstone bridge consisting

of four strain gauge elements.
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in vq
13 in response to a change of temperature uniformly affecting all four elements.

Unfortunately, the temperature compensation is only given for a balanced state of the
bridge i.e. if vq = 0.

2.3.2 Thermal properties

Sometimes strain gauges are applied on large metal parts (carriers) to measure strain
or deformation as in a load cell [16]. Since they are in close contact to the carrier, the
same temperature of both is presumed. Sometimes, the resistive film in a strain gauge
is made of an alloy with negative temperature coefficient to compensate for resistance
change caused by the thermal expansion of the carrier to which it is applied (self-
compensated strain gauge) [16]. Thermal expansion coefficients of steel αst ≈ 10−5K−1

and of aluminium αal ≈ 2× 10−5K−1 are approximately equivalent. Therefore, possibly
a quarter or a half bridge (consisting of one or two grids) is adequate for lots of
applications when using carriers out of steel or aluminium. The temperature change
does not significantly influence the bridge voltage vq.

However, when applying strain gauges on ceramic materials (as piezoelectric actua-
tors consist of) no temperature compensation is ensured, since the expansion coefficient
of quartz αqu = 10−4K−1 is much larger than that of steel or aluminium and addi-
tionally the heating effect of the piezo actuator (due to inner losses) causes a a rise in
temperature even until 40 ◦C (measurement) above the ambient temperature.

Figure 2.15: Strain gauges applied on a piezoelectric
actuator. Size of foil: (3 × 8)mm and
of actuator: (5× 5× 12)mm

13 The bridge voltage vq is referred as sensor’s output.
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2.3 Strain gauges

type (manufacturer) FAET-A6347Q (Micro-Measurements)
grid resistance Ri = 350Ω
supply voltage vs = 20V

instrumentation amplifier INA111 (Burr-Brown)
amplification G = 56 dB (R = 73Ω)

sensitivity S = 238× 103 V/m

Table 2.3: Parameters of strain gauges and amplifier

2.3.3 Dynamic properties

In order to acquire the frequency response of the strain gauge sensor, the response of
the system with actuation and sensor is compared to a reference measurement with
the vibrometer (made immediately after the first) and the response of the actuation is
eliminated. Only the difference as well in magnitude as in phase is drawn in Figure
2.16 called the sensor’s frequency response. It is, like the sensor’s response would be
corrected for constant amplitude of excitation. Therefore, f−3 dB ≈ 20 kHz and it slightly
depends on the amplification factor set for the instrumentation amplifier. The reason
for this is still uninvestigated.
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Figure 2.16: Frequency response of the strain gauge sensor at parameters as in Table
2.3.
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2.3.4 Resolution

To determine resolution of strain gauges the PSD of noise is acquired while the piezo
actuator is not actuated. The creep of the PZT material (as discussed in Section 2.1.3)
does not effect the measurement, because the lower frequency limit of the measurement
is set to 10Hz. The PSD in (logarithmic units) is captured over a linearly spaced
frequency axis (it is a limitation of the used network analyzer HP4935) while setting
up the required resolution bandwidth (RBW) and video bandwidth (VBW) for each
decade of frequency according to Table 2.4 and merging measurements afterwards, as
can be seen on Figure 2.17.

To determine resolution, according to Section 1.4.4, square root of noise power
density is summed up to obtain cumulative noise voltage v(F ) for the frequency
range F = [fl, fh], according to (1.15). For fl = 10Hz and fh = [10Hz, 1MHz] the
cumulative noise voltage v(F ) is shown in Figure 2.18 and the sensor resolution (since it
is proportional to v(F ) by the sensitivity factor) in Figure 2.19. According to that, the
±3σ-resolution for e.g. a 20 kHz bandwidth limited measurement is r(20 kHz) = 22 nm.

f1 f2 RBW VBW

10 Hz 1 kHz 3 Hz 10 mHz
1 kHz 10 kHz 10 Hz 30 mHz
10 kHz 100 kHz 30 Hz 100 mHz
100 kHz 1 MHz 300 Hz 1 Hz

Table 2.4: Resolution bandwidth (RBW) and video bandwidth (VBW) as used for noise
spectrum measurement. Obtained empirically.

2.3.5 Non-linearities

Schitter et al. in [31] compares strain gauges and optical sensors. It is shown, that a
strain gauge can bring non-minimum-phase behavior into the piezo actuator system. It
is observable as

(...) the response to a guidance step14 causes the system to react initially in
the opposite direction before it settles to the specified steady state value [31].

A step signal (steep transition) is a special case of a rectangle signal, which is defined
by the decreasing odd Fourier coefficients (1, 1⁄3, 1⁄5, 1⁄7 ...) as expressed by

rect(t) =
∞∑

m=0

1

2m+ 1
sin(2πf(2m+ 1)t) (2.5)

containing an infinite number of frequency components. Due to the low bandwidth
of the test setup f−3dB = 2kHz (Figure 2.6) a step input is filtered as much, that
non-minimum-phase behavior could not be verified.
14 Natura non facit saltus.
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Figure 2.17: PSD of sensor noise for strain gauges on logarithmic frequency scale
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2.3 Strain gauges

The creep of the glue used to install strain gauges reduces accuracy. The effect can
be minimized using special designed glues for this purpose. Some of them have to pause
several hours [16] at relatively high temperatures (100-300◦C) after applying them,
which is not always allowed in case of piezoelectric actuators due to depolarization
effects. Possibly mainly this effect is observable in the measurement in Figure 3.9.
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2.4 Optical sensors

piezo actuator

s vLo
RL iL

−

+

iph(p)

vph(p)

RF

Figure 2.20: Characterizing optical proximity sensor HDSL9100 with photodiode (oper-
ating principle)

2.4.1 Operation principle

A unique aspect of the usage of optical proximity sensors is that measuring light intensity
is usually not the primary intent. The optical proximity sensor consists of a Light
Emitting Diode (LED) and a photodiode aligned to the same direction as indicated in
Figure 2.20 in the dotted rectangle. The emitted light gets reflected from the reflective
surface carried by the actuator (red indicated plate) and enters the photodiode letting
flow the photocurrent iph. The varying gap s between the actuator and the sensor
modulates iph.

2.4.2 Photodiode

In a wide variety of applications photodiodes15 are used for monitoring light [42]. Due to
a linear transmission between photons entering the pn-junction of a semiconductor and
electrons emitted, a current to voltage amplifier, so called Trans-Impedance Amplifier
(TIA) is preferred to amplify the small current iph(p) to a voltage that can be handled
vph(p)

16 as it can be seen in Figure 2.20.
Depending of the area of the photodiode, quantum efficiency and other parameters, the
photocurrent is very small, iph(p1) ≈ 50 nA at p1 = 100 lux illumination (poor office
light) for the optical proximity sensor HDSL9100 (Agilent Technologies, Santa Clara,
CA, USA). In order to transform it to a practical range of voltage17 it needs to be
amplified by the transimpedance ≈ 107 Ω = 140 dBΩ. Therefore, special considerations
regarding a low noise amplification need to be adhered when designing analog circuit
and placing components.
15 Based on the inner photoelectric effect, discovered by Albert Einstein [38].
16 Parameter p announces a dependence of photon flow, i.e. intensity of light.
17 e.g. [0, 5 ]V
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2.4 Optical sensors

par1 par2

supply voltage ±15V ±15V
transimpedance 20 log(RF ) 120 dBΩ 140 dBΩ

sensitivity Smax 8× 103 V/m 54× 103 V/m
total range 2.3 mm 470μm

Table 2.5: Parameters used for characterizing photodiode based proximity sensor

If the proximity sensor (as it can be seen in Figure 2.20 indicated with dotted rectangle)
containing the photodiode (indicated with the black diode symbol) is perfectly in contact
with the reflective surface carried by the piezo actuator (indicated by the red plate)
covering the photodiode, only the dark current flows iph(0) = idark(ϑ).
The major effect of operation in the near range is the scattering of light, therefore, the
reflectivity of the surface is not as important as in the far range as reported in [33]
and proved by measurements. With increasing distance s the illumination p on the
photodiode increases, under certain circumstances saturating it. The phenomenon of
saturation can be seen in Figure 2.22, the static response in Figure 2.21.

2.4.3 Optimization

In order to characterize the sensors over a wide range of displacement s, a long
stroke actuator (PID controlled positioner with 2 mm range and closed loop bandwidth
fcl < 1Hz according to definition (1.8)) and a short stroke actuator (high dynamic
stacked piezo actuator with known dynamics (≈ 10μm displacement at 1 Hz, f−60 dB >
200 kHz) are used. As it is known from [33] and is verified by measurements, there is
a non-linear (and not unique) relation between displacement s and illuminance p at
the photodiode, effecting the photocurrent iph(p). The aim of this characterization is
to find operating point sop at which actuated by ±10μm at maximum (limits of the
piezoelectric actuator), the gradient of the photocurrent is the highest in order to have
a large change in measurement on response to a displacement.

sop = max
s

d

ds
iph
(
p(s)

)
(2.6)

As it can be observed out of measurements, the optimum also depends on the tran-
simpedance RF (denoted by sop = g(RF ) with g(·) as some unknown, probably non-linear
function). Instead of finding global maxima in dependence of two variables, some fixed
values for RF are set and sop(RF ) is determined empirically. Around this operating
point sop(RF ), the piezo actuator moves only several μm (additionally decreasing by
20 dB/decade of frequency increase as presented in Section 2.1.2) causing a very low
relative change in the intensity of received light Δp modulating iph(p1+Δp), respectively.

2.4.4 Interference

It became apparent that the stacked piezo actuator strongly influences the recorded
dynamics of the photodiode. A fully covered photodiode (p = 0 =⇒ iph = idark) is
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Figure 2.21: Stationary response to displacement of optical proximity sensor HDSL9100
with TIA at different transimpedances

approached to the piezo actuator during oscillation (sweeping) and transfer function
Gs(s) = L(vph(t))/L(s(t)) is captured at different distances si as can be seen in Figure
2.23 for si = {1, 5, 10}mm. The assumed real movement of the actuator (measured with
vibrometer) is plotted with blue (labelled with REF). It has a slope of 20 dB/decade
above 3 kHz and has the first resonance at 41 kHz as introduced in Section 2.1.3 in
Figure 2.2. An ideal sensor would deliver the same, except from a frequency independent
gain (due to non-equal sensitivity of sensors in general).

The transfer function of the TIA (GTIA(s) = L(vph(t))/L(iph(t)) shows less than
3 dB of variability18 in magnitude in the frequency range F = [500Hz, 1MHz], i.e.

• ΔGTIA(F ) < 3 dB19,

• however the fully covered sensor has ΔGs(F ) ≥ 30 dB20

it can be concluded, that there is an interference between actuator and sensor which is
not of optical transmission. Possibly capacitive and inductive coupling between actuator
and sensor are present. This explains a higher sensitivity of Gs(s) closer to the surface
of the actuator (at lower values of s) as visible in Figure 2.23. Furthermore, the sensor’s
transfer function Gs(s) pretends to have a high pass property at all measured distances.
Because of this and that of high variability it can be concluded that the real movement
of the actuator (measured with the vibrometer) is not acquired sufficiently by the sensor
Gs(s). In the case when the photodiode is covered (p = 0 =⇒ iph = idark) the transfer
function Gs(s) should be 0 over all frequencies.

Therefore, different techniques are empirically validated to minimize undesired
influence of actuator. The sensor case and surroundings are shielded and grounded
in order to minimize capacitive coupling as well as magnetic shields (steel plates) are
18 According to definition of variability of a transfer function by (1.24) in Section 1.7.1
19 Measured with approximately constant amplitude of input current of ≈ 5μA over the frequency

range F .
20 Acquired at parameters par2 from Table 2.5.
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vph(s, iL) at various distances s and LED currents iL of optical proximity
sensor HDSL9100. The non-linear relation, noticeable on the uneven
density of vph(s, iL) in response to isodistante spacing Δs = 50μm can be
seen.

placed between the actuator and the sensor with a small hole through it enabling the
measurement. Modified orientation of the sensor is investigated to lower the unwanted
coupling. All this together does not significantly help to reduce interference.
However, the prolongation of the piezo actuator seems promising. Lightweight spacers
are mounted on top of the actuator in order to keep the sensible proximity sensor
farther away from the actuator. As it can be already seen in Figure 2.23, ‖Gs(s)‖ is
much lower for an increased distance s. However, the spacers have a small stiffness and
a not negligible weight, so they are introducing additional resonances next to that of
piezo itself. For the sensor fusion it is necessary that multiple sensors (consequently at
different locations) measures the same amount of displacement as in amplitude as in
phase, which might be violated when mounting an additional mass-spring element.

Other actuators, such as a Lorentz actuator (voice-coil actuator) with precautions
can be possibly used to characterize a photodiode based proximity sensors. However
because of large actuated mass in general, they are usually not able to move at such high
frequencies (e.g. >100 kHz), therefore, characterization is done by optical modulation.
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2.4 Optical sensors

2.4.5 Optical modulation

s0 =const. vLovL
RL iL

−
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iphoto

vph
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Figure 2.24: Characterizing photodiode by modulated illumination

Assuming a similar response caused by an actuated optical mirror by Δs than by
modulated light by Δp21 (same effect assumption) characterization of sensor dynamics
is done by optical modulation. If the sensor is faced to a professional positioning stage
(as e.g. usually in an AFM) the assumption about same effect might be given, in
contrast if the sensors is faced to the top of a stacked piezoelectric actuator in tight
closeness to it operating at high voltages, this assumption is not met. The transfer
function of the sensor (acquired by modulation of light) Gm(s) = L(vph(t))/L(iL(t)) is
characterized, with LED current iL. The LED forces photons to travel to the reflective
surface at fixed distance s0, than back into the photodiode letting iph flowing, which is
amplified by the TIA as visible in Figure 2.24.

Practical considerations

It is not as simple to realize

iL(t) = iLo + ia cos(ωt) (2.7)

due to non-linear characteristic of the LED. The exponential rise of the current through
a diode when applying a linearly increasing voltage on it, motivates to use a resistor
RL in series to the LED to make the current iL to rise more flat, to

RL =
vL
iL

= 100Ω for vL > 1.1V (2.8)

The offset voltage vLo is set to drive the current iLo = 20mA. For realization of (2.7) a
bias-tee is used, which equivalent circuit can be seen dashed in Figure 2.25. It enables a
low impedance path for direct current (DC) from vLo

22 to vq since idc = (vLo − vq)/Rb

21 At least for small Δp.
22 From the connector where the potential vLo is labelled.
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as well as a low impedance path for high frequency (HF) currents from vL to vq since
iac = (vLo − vq)/(iωCb) but neither noteworthy DC nor HF currents flow across23.

The sensor’s transfer function Gm(s) for various s0 and empirically found ia = 1mA
can be seen in Figure 2.26.

vLo

Rb idc
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vq vR
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Figure 2.25: Equivalent circuit of bias-tee
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Figure 2.26: Bode plot of optical proximity sensor HDSL9100 acquired by modulated
light at different distances to mirror s = {100, 200, 300, 400}μm

According to the transfer function in Figure 2.26, the optical proximity sensor HDSL9100
can be used at a certain position where no saturation of photodiode occurs (here
s0 = 400μm) to measure displacement up to f−3 dB = 70 kHz with ±3σ-resolution of
r(70 kHz) = 14μm.

23 From connector labelled with vLo to connector labelled with vL.
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2.5 Capacitive sensor

2.5 Capacitive sensor

According to [13] the most commonly used sensors in nanopositioning systems are capac-
itive and eddy-current sensors. Both enables non-contact measurement of displacement,
however they require a conductive surface of the target.

2.5.1 Operation principle

Commercially available capacitive displacement sensors mostly utilize a varying gap δ
to change their capacitance C (and thus the output in some proportion) approximately
expressed by the relation

C(δ) =
εA

δ
(2.9)

in response to a displacement by Δδ with δ = δ0 +Δδ and ε as permittivity of air and
A as effective surface of the electrodes.

Compared to strain gauges or optical sensors, capacitive sensors have a high
sensitivity in a very limited range of measurement due to the 1/δ relation for small δ.
The linearity of the output mostly depends on the geometry as well as constructional
parameters (such as the guard ring which eliminates the influence of stray fields to the
measurement) as well as on the converter electronics which linearises C(δ) and maps to
an output voltage vq ∝ Δδ.

2.5.2 Practical considerations

Usually, capacitive sensors are affordable for the high resolution and high bandwidth
they can provide. Table 2.6 gives an impression of performance for commercially
available displacement sensors of MicroEpsilon24. The ±3σ-resolution is calculated
out of the reported RMS-resolution enabling a comparison to other sensors introduced
already25.

tpye range (absolute) bandwidth resolution (RMS) ±3σ-resolution

series 2800 60μm 1 kHz 160 pm 0.96 nm
series 2800 500μm 1 kHz 7 nm 42 nm
series 5504 50μm 100 kHz 1.9 nm 11.4 nm
series 5501 250μm 100 kHz 17.9 nm 107 nm

Table 2.6: Range, resolution and bandwidth of capacitive sensors from MicroEpsilon

Capacitive sensors are very sensitive to tilt. According to experiments it is hard to
align a short range sensor without having a guidance or bearings, such as a flex structure
for a postmount adjustment. A simple radial fixing screw might cause deformation of
the sensor’s head which is undesirably mapped in the output.
24 Lowell, Massachusetts, USA
25 Since there is no explicit information about the distribution of noise, the assumption RMS-noise =

1σ of a normal distribution is made.
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2.6 Magnetic sensors

A wide variety of effects can be used to measure the magnetic field. The relevant ones,
utilized by sensors of today’s technology are summarized in [5] and presented partly in
followings.

• The Hall effect reposes on the phenomena that a voltage is being generated in
an appropriate material that conducts a transverse current and is exposed to a
magnetic flux. Usually, due to very low voltages (several mV) they are rarely
used for precise field measurement, however they are commonly used in magnetic
controlled switches [5].

• Fluxgates are currently the most sensitive devices for very low magnetic fields,
however they require a massive iron core with several coils [44], so they are too
large in general to get used for a position measurement e.g. in an AFM.

• Sensors based on the GMR effect produce according to [30] up to 8 times more
change in electrical resistance compared to other common types of Anisotrop
Magneto Resistance (AMR) sensors. The principle of operation is a quantum
effect which occurs in thin, stacked layers of ferromagnetic and non-magnetic
materials if they are exposed to a magnetic field [28], [23]. Such sensors are
commercially available as integrated devices on a silicon chip for an affordable
price. Therefore this sensory principle is investigated in followings.

2.6.1 GMR as displacement sensor

A similar aspect of using magnetic sensors is that measuring the magnetic field is usually
not the primary intent. As for optical sensors already discussed in Section 2.4, the
displacement s influences in some manner the sensitive quantity, here the local magnetic
field strength H inside the sensor. Due to the principle of operation the magnetic flux
B through a small window (area) inside the sensor is mapped on the output.

The idea to use magnetic sensors for displacement measurement requires an inho-
mogeneous distribution of a magnetic field ∇H �= 0 in order that the sensor measures
a change in the local flux density as response to a displacement. The intentionally
generated field can be produced by permanent magnets or coils. It is possible to actuate
either the sensor in a stationary inhomogeneous magnetic field, or to actuate the source
of the magnetic field while the sensor is at fixed location. (actuated sensor and actuated
magnet principle, respectively)
Regarding the magnetic field measured by the sensor, both cases are equivalent. The
source of the magnetic field is also irrelevant for the sensor. H is highly probably a
superposition of the intentionally generated field and that of external sources (distur-
bances) such as the Earth’s magnetic field, mains, etc.
Inside such a sensor there is often a Wheatstone-bridge made out of four identical
elements sensible to the magnetic field.
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Figure 2.28: Sensitivity vq/vs in param-
eter of α for R2 = R3 = R,
R1=R4=(1−α)R

Wheatstone-bridge

By arranging four sensitive elements (indicated by R1 . . . R4) inside a sensor in a
configuration according to Figure 2.27 a Wheatstone bridge is formed. Two of them
R2 and R3 have to be covered with Mu-metal in order to make them insensible to
the magnetic flux density Bl linked to the area A 26. It is assumed, that Bl(A ) is
homogeneous within A , to effect all four elements (at least R1 and R4) uniformly. By
making the simplification

R2 = R3 = R, R1 = R4 = (1− α)R (2.10)

where α is some function of Bl(A ) and other constructional parameters of the sensor,
(denoted by α = g(Bl(A ),m) with unknown function g(·) that has to be found
empirically) the sensitivity SW of the Wheatstone-bridge can be derived to

SW =
vq
vs

=
R2

R1 +R2

− R4

R3 +R4

(2.10)
=

α

2− α
(2.11)

which is shown for α ∈ [0.8, 1.2] in Figure 2.28. The Wheatstone bridge is balanced if
following criterion is met.

R1

R2

=
R3

R4

=⇒ vq = 0 (2.12)

The GMR sensor used for characterization is the AA002 from NVE27. It is obvious
to take the highest possible supply voltage vs to maximize bridge voltage vq as it can
be seen from (2.11). vs has an upper limit of 48 V because of internal dissipation of the
sensor [28], so a symmetrical supply (to ground) of ±24V is chosen. It can be gathered
from [28] that constructional parameter m influences at which magnetic flux density the

26 Symbolized by the dashed rectangle in Figure 2.27.
27 Non Volatile Electronics, Minneapolis, MN, USA.
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sensor saturates, causing further non-linearities. Therefore, it is necessary to pair the
sensor with appropriate geometry (m) to a magnetic field configuration, which is object
of the empirical optimization process.
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Figure 2.29: Stationary output of the GMR sensor as response to an actuated permanent
magnet.

The stationary output vq = vc − vd, presented in the upper part of Figure 2.29,
results as response to the displacement of the permanent magnet NdBFe40 (�4×8)mm
by Δs = 700μm. The spatial derivation of vq is called sensitivity of the sensor, it is
shown in the lower part of Figure 2.29 and it is denoted by SS = ∂/∂s vq. SS shows
a maximum of 6380V/m at z1 = 1.5mm (which is another degree of freedom). In
Cartesian coordinates, with base vectors s = [1, 0, 0]T , z = [0, 1, 0]T ,x = [0, 0, 1]T , the
output voltage vq along the z axis as well as in s (axis of measurement) is presented as
a 3D-plot in Figure 2.32.
The field configuration with the permanent magnet is simulated with Finite Element
Methods using FEMM28. The field generated by the permanent magnet H is shown
grayscaled in Figure 2.30 with vector plot of flux density B. The sensor is located at
the red indicated line, so the projection of H into the sensor’s preferred direction of
sensitivity is given by zTH = Ht as it can be seen in Figure 2.31. It shows, that by
actuating in direction of s around the line of symmetry29 by placing the sensor far off
the magnet30 (z1) the tangential component of magnetic field strength Ht crosses 0 A/m
when the sensor is on the axis of symmetry, thus the output voltage vq(s0) is lowest
with sensitivity SS = ∂/∂s vq(s0) = 0.
28 David Meeker, Ph.D., Waltham, MA, USA.
29 The value 2 mm on the abscissa in Figure 2.31 refers to the line of symmetry.
30 To prevent high fields at sharp edges e.g. on corners of ferrous materials.
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2.6 Magnetic sensors

Figure 2.30: FEM simulation of the arrangement with permanent magnet and steel

Figure 2.31: Transversal magnetic field Ht along red marked path in Figure 2.30 as it
is measured by the GMR sensor
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2.6 Magnetic sensors

2.6.2 Temperature drift

Measurements show a high correlation (99%) between output voltage vq and temperature
ϑ. The temperature drift (temperature dependence as introduced in Section 1.4.5)
TD(vq) = −230μV/◦C is considered as high. The output voltage is recorded while
the GMR sensor is heated up and cooled down in a shielded temperature chamber
with very low temperature gradients (rise time τ = 20min and Δϑ = 40 ◦C) to ensure
homogeneous heating. The temperature profile can be seen in Figure 2.33.
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2 Sensor characterization

A long time recording of the sensor signal vq(t) is performed while the sensor is
exposed to 5 consequent cycles of alternating heating and cooling, shown in Figure
2.34. The sensor’s output vq is drawn on the vertical axis towards the temperature
on the horizontal axis. The jump in vq right after stopping the heating, indicated
with the arrow in Figure 2.34, arises highly possibly from the magnetic field of the
spiral-heater inside the temperature chamber. The reason why it has a varying effect
on the measurement is still unclear.
Figure 2.34 shows further that TD(vq) (the temperature dependence of the bridge
voltage) lowers consequently with number of heating and cooling cycles passed (cycle
1. . .cycle 5). A possible explanation to that might be the lowering bridge voltage vq
and hence a more balanced status of the Wheatstone-bridge. It is widely known that
if a Wheatstone-bridge (Figure 2.27) is not balanced (criterion (2.12) is not met) the
temperature compensation of its elements do not provide a temperature compensation
of the bridge voltage vq anymore. Thus, the unbalanced status of a Wheatstone-bridge
has despite its four identical elements a temperature dependence and hence a drift.

The reason why the bridge gets more balanced just by passing heating and cooling
cycles is assumed to arise from the demagnetization of the shielding Mu-metal plates
inside the GMR sensor as introduced in Figure 2.27. If this assumption is right TD(vq)
depends on the residual magnetization Br producing an operating point dependent
offset voltage and hence a non-linearity. To prove (or to disprove) this, the entire
sensor (with the shielding Mu-metal plates inside) is demagnetized and TD(vq) newly
evaluated.

Figure 2.35: GMR sensor with demagnetizing coil
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2.6 Magnetic sensors

2.6.3 Demagnetization

Due to hysteresis in ferromagnetic materials, they can be demagnetized by cyclical
approaching the origo on the B/H curve by applying an alternating magnetic field with
decaying amplitude produced by a coil with current

iL(t) = exp

(
− t

τL

)
sin(ωt) (2.13)

by placing the sensor close to the coil in order use the stray magnetic field of the coil to
demagnetise the sensor as the photo in Figure 2.35 shows.

Measurements (Figure 2.36) confirm that demagnetizing the sensor lowered the
correlation to temperature by 99% to | corr(ϑ, vq)| = 0.01, so TD(vq) ≈ 0, as well as
|vq| < 0.2mV (instead of vq ≈ 40mV before demagnetizing) so that the Wheatstone-
bridge is balanced.
On the one hand it could be shown that demagnetizing the sensor eliminates the
temperature drift. However, on the other hand it is still not clear whether TD(vq)
(before demagnetization) arises from a TD(Br) or from a general unbalanced status of
the Wheatstone-bridge (as expected during normal operation as displacement sensor).

As the unbalanced status of the Wheatstone-bridge can not be avoided when using
the GMR sensor for displacement measurement, it motivates to investigate the AC-
measurement bridge (instead of a DC Wheatstone-bridge).

The supply voltage of the AC-measurement bridge is an oscillation with fixed
frequency

vs(t) = vs0 cos(ωct), vs0 ∈ R (2.14)

where fc = ωc/(2π) is called the carrier frequency. The response can be formulated as

vq(t) = vqr cos(ωct) + vqi sin(ωct) (2.15)

with real coefficients, too.

According to [44] an AC field with fc = 10 kHz reduces hysteresis from 2% to
0.5 % and non-linearity from 3 % to 2 % (in the range of ±300A/m field strength). For
simplicity, they are using square wave and triggered sampling instead of a sine carrier
(2.14) and IQ-detector (magnitude and phase) which might reduce THD and possibly
further non-linearities, too.

2.6.4 Resolution

After acquiring the PSD31 (Figure 2.37) the noise voltage and hence the resolution of
the GMR sensor versus the measurement bandwidth can be computed (Figure 2.38). It
can be seen that for a 100 kHz bandwidth the ±3σ resolution is 16 nm or equivalently
the RMS-resolution is 2.67 nm.
Hysteresis (inside the sensor) lowers accuracy. It is mostly caused by changes in size and

31 As for strain gauges already discussed in Section 2.3.4
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Figure 2.36: Comparison of GMR sensor’s output before and after
demagnetizing, in relation to temperature

number of magnetic domains in ferromagnetic materials [46]. Another effect is ageing
which presumably reduces accuracy and precision. It might be caused by depletion of
inner stress.

2.6.5 Bandwidth

By the actuated permanent magnet (acting as source of magnetic field) a bandwidth of
f−3 dB = 14.3 kHz could be achieved. Since the permanent magnet NdBFe40 (�4×8)mm
with 2.1 g mass seems to be too heavy to carried by the piezo actuator NAC2025 without
excessive resonances, the GMR sensor is characterized by the magnetic field of a solenoid
(coil) and current through it

is(t) =
us(t)

iωL
(2.16)

with voltage us(t) = us0 cos(ωt) (with constant amplitude us0) on the solenoid. It has
inductivity L and transfer function of an integrator

Tui(s) =
L(is(t))
L(us(t))

=
1

sL
(2.17)

The frequency response of vq needs to be corrected for the −20 dB/decade decay. The
result is visible in Figure 2.39, the bandwidth of f−3 dB = 82.4 kHz can be validated.
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2 Sensor characterization

Out of the datasheet [28] it can be read out that even a bandwidth of 1MHz is
possible. This seems to be confirmed, since similar anisotropic magnetic sensors are
used in hard disk drives. For a typical data rates in hard disks of today’s technology
at 30MByte/s (1 byte = 8 bits) a frequency of 240MHz should be possible, however
sensors are delivering only binary information (the resolution is not comparable) and
there is a huge knowledge on signal conditioning built in. However, a much higher
bandwidth than 82.4 kHz is assumed to be possible.
The limits of the verification are mostly

• that there are no available actuators which can move by few hundred nanometers
at least (SNR) at frequencies above 100 kHz by carrying either the GMR sensor
or a small permanent magnet,

• or by the characterization with magnetic fields of coils the impact of high-frequency
effects such as the Skin-effect is not known. It would require a numerical simulation
of the setup of coil and sensor to determine the HF-magnetic field which the
sensor might measure. Alternatively a precise HF magnetic field meter could be
used as a reference.
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2 Sensor characterization

2.7 Piezoelectric force sensor

vs

Ro ic

C1

C2

Cp(F )

C3

vc vd
vq

va

Figure 2.40: Driving piezoelectric actuator Cp(F ) in
bridge, (self-sensing [41])

The piezoelectric actuator is often modeled as a capacitor Cp. The electric charge
Q between conductive layers within a piezoelectric actuator is in good approximation
proportional to its elongation s [26]. By considering the following global relationship

i =
dQ

dt
=⇒ Q =

∫
i(t) dt ∝ Δs (2.18)

it can be easily seen that even small currents i(t) (leakage currents) causes a change in
the charge and hence causes a drift of the actuator’s elongation over time s = s0 +Δs.

As reported in [21] the impedance change of the piezo actuator Cp(F ) during
actuation with a fixed frequency of sine can be used to monitor forces F (t) (the sum of
acceleration forces and external forces) acting on the piezo itself. Therefore, a driving
circuit according to Figure 2.40 is necessary.
By chosing C1 = C2 = C3 = C = 400 nF as fixed capacitances in the range of the piezo’s
capacity and by assigning Ro = 200Ω as the concentrated resistance of the amplifier,
the AC-bridge has a frequency independent sensitivity given by

vq
va

=
C − Cp(F )

2(C + Cp(F ))
(2.19)

vq
vs

=
C(C − Cp(F ))(C + 3Cp(F ))

(2C + 2Cp(F ))(C2 + 3CCp(F ) + 2CRo + 2RoCp(F ))
(2.20)

which are shown for Cp = C ± 20% in Figure 2.41. It can be seen that a high Ro

considerably lowers the sensitivity by 5× 107 and partly therefore, an instrumentation
amplifier needs to be used to amplify vq to a practical range of voltage. It is also
necessary because of the high common mode voltage.

The identified transfer function L(vq(t))/L(vs(t)) can be seen in Figure 2.42. In the
case if an analytical model of the piezo actuator would exist, the sensor principle might
be used for calculating the displacement by integrating the acceleration twice. Since
the exact relationship between the forces F (F ∝ vq) and the acceleration is not known,
this type of sensor is not investigated furthermore. However, in [32] it is shown that
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presented technique of self-sensing can be used to damp resonance of piezo actuators by
a feedback control.
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2 Sensor characterization

2.8 Summary

In followings a short summary of discussed sensors and other displacement measuring
principles out of literature are given.

1. magnetic field sensors e.g. GMR sensor AA002 from NVE
+○ bandwidth at least of f−3 dB = 82.4 kHz (Figure 2.39)
+○ high resolution r(10 kHz) = 2.0 nmrms (Figure 2.38)
+○ sensor is very lightweight (87 mg)
+○ inexpensive
−○ temperature drift if not balanced (Figure 2.36)
−○ interference with any source of magnetic field (can be lowered using AC-

bridge)
2. capacitive sensors e.g. 5501-250 from MicroEpsilon

+○ high bandwidth of 100 kHz
+○ high resolution r(100 kHz) = 1.09 nmrms

−○ conductive surface of actuator (actuated stage) is required (if already present,
the most lightweight sensor)

−○ usually rather expensive
3. optical proximity sensor e.g. HDSL9100 from Agilent

+○ bandwidth at least of f−3 dB = 70 kHz (Figure 2.26)
−○ crosstalk to piezoelectric actuators in their closeness (within 15 mm lateral)
+○ only reflective surface is needed (lightweight)
+○ low costs
−○ moderate resolution r(10 kHz) = 82 nmrms

−○ influence of ambient light
4. mechanical strain gauges e.g. FAET-A6347Q from Micro-Measurements

+○ high resolution r(10 kHz) = 3.1 nmrms (Figure 2.19)
+○ low costs
−○ temperature drift despite full Wheatstone bridge
−○ interference with the actuator especially at high frequencies
−○ low bandwidth of f−3 dB = 20 kHz (Figure 2.16)

5. optical astigmatic method
+○ high resolution r(10 kHz) = 5 nmrms

+○ high bandwidth (45 MHz) [DVD pickup unit]
+○ no significant influence of external light
−○ inconvenient setup due to several degrees of freedom for adjustment
−○ not as small as others because of 4QPD and optical path
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CHAPTER 3

Fusion

Data fusion is the process of combining information from a number of different sources
to provide a robust and complete description of an environment or process of interest
[8]. In focus to the real time implementation of a position estimation for closed loop
control, only causal methods of filtering are presented.

For performance improvement and disturbance rejection of position estimation,
sensors based on different physical principles have to be combined to minimize effect of
external disturbances in one single domain.

It is also possible to combine not only displacement sensors. It is conceivable
to merge data of an acceleration sensor by integrating it twice with a displacement
sensor. However, due to practical limitations, especially for nano-positioning in AFMs
additional moving mass (acceleration sensor) deteriorates dynamic behavior of the
actuator by possibly adding additional resonances, so they are not as preferred as
contact-less measurements.

Real sensors suffer next to limited bandwidth also from enhanced sensitivity for
some frequencies or insensitivity for others. To compensate for these linear imperfections,
e.g. the method of filtering with the inverse of the sensor’s model is used.

3.1 Model inversion

The aim of model inversion (consensual used term compensation filtering) is to compen-
sate for the uneven sensitivity over the frequency for a given sensor. Sensor’s dynamics
are assumed to not change with time, thus LTI models are used to describe their
behavior. The procedure to obtain filters can be grouped mainly in four tasks.

1. Acquisition: The linear sensor dynamics is acquired by recording a Bode plot
containing the transfer function from displacement to the sensor’s output. The
vibrometer is used as a reference sensor measuring the displacement.
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3 Fusion

2. Identification: Continuous-time transfer function models are fitted on the mea-
surement, representing an approximation of the sensor’s linear dynamics up to a
certain degree of complexity (model order). → G(s)

3. Model inversion: A realizable filter is designed to compensate for the modeled
linear imperfections of the sensor over a wide range of frequencies (at least up to
a high upper frequency limit). → F (s)

4. Verification: The downstream connected filter F (s) together with the sensor is
validated through measurements, in order to verify modeling simplifications (2.)
and the performance of the compensation (3.).

The aim of model inversion can be expressed by

G(iω)F (iω) ≈ 1 (3.1)

for a wide range of frequencies ω with sensor’s transfer function G(s) and compensation
filter’s transfer function F (s) with the remark to correct the phase to 0◦, too. Therefore,
it can be summarized as

Δ
(
G(iω)F (iω)

)� 1 dB (3.2)

with the variability of a transfer function Δ(·) according to definition (1.24).

Demonstrative Example

For example, a sensor is modeled with a second order minimum-phase model, i.e. all
zeros of the corresponding transfer function (according to (1.21)) are in the LHP of
the Laplace-domain,

G1(s) =
C

1 + 2ξ s
ω0

+ ( s
ω0
)2

(3.3)

with gain C = 104, damping factor ξ = 0.1 indicating a decent peaking and resonance
frequency ω0 = 1. The two poles are located at p1 = −0.1± 1i ∈ C. Theoretically the
inverse transfer function

G2(s) =
1

G1(s)
(3.4)

with no poles and two zeros at z2 = p1 would cancel out the poles of G1(s) resulting
in a uniform transmission G1(s)G2(s) = 1. Unfortunately G2(s) is not proper and
therefore not realizable. Adding at least two LHP poles (or one pair of complex poles)
at high frequencies makes it realizable although the amplification needs to be adjusted.
Therefore, calculating the inverse by

G3(s) =
1

1 +G1(s)

(3.3)
=

1 + 2ξ s
ω0

+ ( s
ω0
)2

1 + 2ξ s
ω0

+ ( s
ω0
)2 + C

(3.5)

with poles in the LHP at p3 = −0.1± 100i results in a compensator shown on the left
in Figure 3.1. It provides a compensation to 0 dB as far as G1(s) firstly crosses the 0 dB
line, although it has also a peak caused by insufficient damping. By moving the poles
more to the left on the s-plane to p4 = −100± 1i an adequate compensation (shown by
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Figure 3.1: Compensator design: Bode plots for sensor G1(s), inverse dynamics with
additional poles G3(s) or G4(s) and transfer function of the serial connection
of them G1(s)G3(s) and G1(s)G4(s), respectively.

transfer function G4(s)) can be achieved without peaking, as indicated on the right in
Figure 3.1.

There are several practical limitations of zero-pole cancellation.

• A compensation for non-minimum-phase sensors (RHP zeros) can only be done
by an unstable compensator with RHP poles, which is avoided due to practical
reasons.

• Each measurement is superimposed with noise. Amplification of sensor’s signal
will also amplify noise (and possibly add some additional noise). Therefore,
amplification (and also damping) should be limited to a certain level, de facto
until SNR drops below a critical level (e.g. 40 dB).

• Parameter uncertainties and change of transfer function (e.g. temporal or thermal)
can evoke that G1(s)G4(s) �= 1 even not in bandwidth of interest.

Therefore, compensation of sensor dynamics should be limited to a frequency range
where above criteria can be fulfilled. It is required to characterize the sensor dynamics
in advance and also the sensor’s sensitivity to environmental parameters, such as the
orientation of magnetic sensors due to the Earth’s magnetic field, tilting of optical sensors
due to sudden change of reflectivity, etc. A more advanced method to compensate for
parameter uncertainties are model based parameter estimates (e.g. Kalman filter, or
robust control).
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3 Fusion

Generally, the method for compensator design according to (3.5) can be applied
on strict proper rational transfer function models of any order, however not for linear
models with direct feed-through or for linear models in infinite dimensional normed
vector spaces, such as time delays like G(s) = exp(−Tds) or even non-linear models.
H∞-optimal filtering (which is discussed in Section 3.4) makes it obsolete to calculate
inverse dynamics as presented in this section. Before doing that, a very simple method
to fuse sensors is presented in next.

3.2 Complementary filters

A simple method to fuse data from different sensors can take place in the frequency
domain by low-pass and high-pass filters. Assuming there are two displacement sensors
with overlapping bandwidth (both have sufficient signal level in the same frequency
range). For example

1. a fast sensor with high-pass characteristic GH(s), e.g. AC-coupled due to high
temperature drift of the measurement) and

2. a slow sensor with low-pass characteristic GL(s) with preferably no drift.

For a given crossover frequency fco the filter arrangement as presented in Figure 3.2
can extend the bandwidth of the first sensor by the non-overlapping bandwidth of the
second one.

In order to ensure the same sensitivity for both sensors, inverse filters for each
according to Section 3.1 are computed, and the transfer functions GL(s) and GH(s) in
Figure 3.2 already include the terms for the compensation.

GL(s) FLP (s)
y1(t)

GH(s) FHP (s)
y2(t)

f1(t)

f2(t)

x(t) x̂(t)

Figure 3.2: Sensor fusion by high-pass and low-pass filtering

3.2.1 Implementation

For the implementation of low-pass and high-pass filters an analogue circuitry may
perform well, however as it is discussed in Section 2.2 an ADC is used to sample the
sensor’s voltage and filters are implemented in digital. This enables advanced methods
of filtering e.g. to adjust fco adaptively, according to a time varying variance σ2(t)
or a location dependent variance σ2(x) of the one or even both sensors. The digital
implementation also enables the usage of high order filters with fast development time.
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3.2 Complementary filters

For the implementation of simultaneous high-pass and low-pass filtering of different
sensors at the same crossover frequency fco the method illustrated in Figure 3.3 can be
used. The output of the fast sensor y2(t) may be biased1 the estimation x̂(t) does not
contain it.

GL(s)
y1(t)

GH(s)
y2(t)

−
FLP (s)

d(t) e(t)

−
x(t)

x̂(t)

Figure 3.3: Implementation of complementary filtering

For verification, two different filter designs are tested.

a) First order low-pass filter with fco = 1kHz is implemented on a PS (discussed in
Section 2.2) with a sampling rate of fs = 1 MSPS,

b) Equiripple linear-phase Finite Impulse Response (FIR) filter is designed in Mat-
lab by command firpm() (based on [24]) and implemented on the same PS at
sampling rate up to fs = 0.6 MSPS.

The bandwidth of the slow optical sensor HDSL9100 (presented in Section 2.4) can be
extended from 7 kHz to 30 kHz by combining with the AC-coupled fast magnetic sensor
NVE AA001 (presented in Section 2.6). Sensor noise is not influenced, thus the noise of
the estimation x̂(t) is approximately equivalent to the sensors before filtering exclusively
quantization noise of the ADC. Model uncertainties (and unequal sensitivity of the
two sensors despite to filtering by model’s inverse) causes a small change in amplitude
when crossing fco while sweeping. Some additional phase lag (|ϕ| > 45◦) can also be
observed around fco and at high frequencies (> 70 kHz). Both phenomena are more
dominant with increasing order of the used filter.

1 It can have any drift with gradient lower than fco.
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3 Fusion

3.3 Kalman filter

3.3.1 Theory of operation

The Kalman Filter2 is a linear state estimator for unbiased noise of normal distribution,
which recursively calculates a minimum error variance estimation for unknown states of
a linear dynamic system, based on periodic measurements. For Linear Time Invariant
(LTI) systems the procedure to obtain a steady state Kalman Filter (ssKF) can be
divided into

1. problem formulation,

2. offline design (the Kalman gain as solution of the stationary Riccati equation),

3. implementation of filtering (state-space, transfer function) and

4. validation of the performance with parameter uncertainties on a real time PS.

The Multiple Input Multiple Output (MIMO) discrete-time process with sampling time
Ts is described by the linear difference equation system

xk+1 = Axk +Buk +Gwk (3.6)

with the measurement equation

yk = Cxk + vk (3.7)

with the time index k, state vector x ∈ R
n, input u ∈ R

p, measurement y ∈ R
q

and random variables w ∈ R
r, v ∈ R

q representing process and measurement noise,
respectively. Matrices have appropriate dimensions: A ∈ R

n×n, B ∈ R
n×p, G ∈ R

n×r,
C ∈ R

q×n. w and v are assumed to be white noise with normal distribution (Gaussian)
and zero mean (unbiased). Additionally, they have to be uncorrelated, i.e. they
are of independent source, which is no major limitation since with the assumption
G = B =⇒ r = p, w can be considered as the noise of the reference signal u (input
noise), while v represents the noise of the measurement y (measurement noise ≡ sensor
noise). For LTI systems constant

process noise covariance cov(w) = E[wkw
T
j ] =

{
Q for k=j

0 else
(3.8a)

measurement noise covariance cov(v) = E[vkv
T
j ] =

{
R for k=j

0 else
(3.8b)

matrices are assumed, with E as the expectation operator. By using the notation3

2 Named after Rudolf E. Kalman, who introduced in 1960 recursive solution to discrete data filtering
problem [36].

3 a priori . . . from the earlier, a posteriori . . . from the later. The notion of this distinction (like
empirical and non-empirical) comes from Immanuel Kant: Critique of Pure Reason.
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3.3 Kalman filter

x̂−
k . . . . . . . . . . . . . . . . . . . . . a priori state estimation, based on measurements 0, ..., k−1,

x̂k . . . . . . . . . . . . . . . . . . . . . .a posteriori state estimation, based on measurements 0, ..., k,
e−k = xk − x̂−

k . . . . . . . . . . a priori estimation error vector,
ek = xk − x̂k ∈ R

n . . . . . .a posteriori estimation error vector,
P−

k = E[e−k e
−T
k ] . . . . . . . . a priori estimation error covariance matrix,

Pk = E[eke
T
k ] ∈ R

n×n. . . a posteriori estimation error covariance matrix.

as used by [35]. The idea of the Kalman filter is to minimize the squared estimation
error

min
K

E
(‖ek‖22) = min

K
‖Pk‖2 (3.9)

by an appropriate vector4 K. With equation

x̂k = x̂−
k +K(yk −Cx̂−

k ) ... of measurement update (3.10)

a linear combination between state estimation x̂−
k and a weighted difference of new

measurement yk and measurement prediction Cx̂−
k is given. The equation

x̂k+1 = Ax̂−
k +Buk ... represents state prediction. (3.11)

The Kalman filtering process can be considered as a prediction-update formulation,
which uses a predefined linear model of the system to predict the state at the next time
step [15]. Model errors are corrected using actual measurements of the system. The
prediction (3.11) and update (3.10) are combined using the Kalman gain K ∈ R

n×q

which is determined to minimize the 2-norm of Pk (3.9), the mean-square error of the
state estimates. Stationary Kalman gain K∞ is determined by solving the discrete
Riccati-equation backwards in time, e.g. in Matlab by kalman() or kalmd() for
continuous-time or discrete-time implementation of the plant, respectively. Since, of the
assumption of an LTI system, K∞ as the solution of the stationary Riccati-equation is
the best gain to weight measurements in order to minimize the variance of estimation.
Therefore, K = K∞ and this special Kalman filter is called the steady-state Kalman
filter (ssKF).

In followings, MISO ssKF (inputs: control input and noisy sensor signal, output:
position estimation) for white sensor noise and later on for colored noise (bandwidth
limited sensor noise) is being discussed and implementation results are shown.

3.3.2 Kalman filter for white noise

ssKF is designed for the third order (n = 3) model of actuation, including an amplifier,
a piezoelectric actuator and one ideal sensor (the vibrometer is considered in bandwidth
of interest as reference measurement → ideal sensor) in series, denoted by the transfer
function Gact(s), as plotted in Figure 3.4. It’s realization in state-space is presented

4 The term vector should not be a constrain. For one-dimensional output systems K is a row vector
with n rows, however for multiple output systems it is a matrix with as many columns as outputs.
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with differential equations (1.18) in continuous-time with matrices

A =

⎡
⎣−7.64× 104 −6.25× 1010 −1.64× 1015

1 0 0
0 1 0

⎤
⎦ ,b =

⎡
⎣10
0

⎤
⎦ , c =

⎡
⎣ 1.03× 104

1.178× 109

1.086× 1015

⎤
⎦

and d = 0. This is the companion realization (by default in Matlab) which is
numerically ill conditioned (1015). By converting it to the modal form, matrices are

A =

⎡
⎣−2.48× 104 2.46× 105 0
−2.46× 105 −2.48× 104 0

0 0 −2.68× 104

⎤
⎦ ,b =

⎡
⎣226.7125.3
78.5

⎤
⎦ , c =

⎡
⎣−19.21
−22.83
223.3

⎤
⎦(3.12)

and the condition number is reduced to 10 (factor of 1014) and eigenvalues of A can be
seen directly. All poles are in the LHP located at

psys = {−2.48× 104 ± 2.46× 105i,−2.68× 104} and zeros also in the LHP at

zsys = −5.71× 104 ± 3.19× 105i.

Conversion to discrete-time system (discretizing)

Due to the finite sampling frequency fs = 1/Ts (and due to some additional delay because
of computation time when implementing Kalman filter) on real systems, performance
of filtering by the underlying discretized model compared to that with continuous-time
model may degrade.
A zero order Sample-and-Hold with sampling frequency fs and the transfer function

G(s) =
1

s
(1− exp(−Tss)) (3.13)

modifies the continuous-time transfer function Gact(s) by producing ± damping and ±
phase delay as can be seen in Figure 3.4 for two different sampling rates. According
Nyquist the frequency of the input has to be limited to fs/2 to avoid aliasing.
Plant (3.12) is discretized with Ts = 10μs (fs = 100 kHz) using a Zero-Order-Hold
(ZOH) sampling e.g. by Matlab command c2d(). All poles are inside the unity circle
as can be seen in Figure 3.5. Plant (3.12) is fully state-observable, since the observability
matrix

O =

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ (3.14)

which needs to have full rank in order that the system is fully state-observable, has for
the presented system rank(O)=35. The Kalman Filter is guaranteed to create a stable
nominal dynamics with poles at the eigenvalues of (A−KC), as long as the plant is
fully state-observable [36].

5 If it would not have full rank, minimal realization needs to be computed before the next step.
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The Kalman filter is designed for the one-dimensional (p = 1) input trajectory uk, one-
dimensional (q = 1) measurement yk, both superimposed with noise, as one-dimensional
(r = 1) process noise wk which is assumed to effect system as input uk by setting G = B
in (3.6). The stationary Kalman gain for the present configuration is determined to

K =

⎡
⎣−1.197× 10−4

1.643× 10−4

1.752× 10−4

⎤
⎦

The filter is implemented as a state-space model in the simulation as in Figure 3.6 and
as a set of periodic state prediction (3.11) and update (3.10) equations, in programming
language C for realization on a PS.

For validation purpose a reference trajectory uk is chosen to be a step from -1 to
1 at t = 1ms, (by exciting multiple frequencies at one time), so step response with
both sensor noise and measurement noise can be seen in the time domain in Figure 3.7
labelled by measurement. The position estimation and histograms of both measurement
and estimation are also shown. The histograms exclude the yellow marked time slots
where the initial estimation error settles (due to the unknown initial state vector as
this is realistic for real systems) and the level transition slot, which occurs due to the
finite rise time of actuation plant.

The presented filtering successfully lowers variance σ2 (second central moment of
normal distribution) by 95.3% while standard deviation σ is lowered by 78.3 %. This
yields an enhancement of sensor’s resolution by 78.3 %. To influence performance and
minimize estimation error (3.9) Q, R can be tuned manually or estimated using the
Autocovariance Least-Squares (ALS) method. For the presented case they are set to
Q = σ2

w = 0.1, R = σ2
v = 0.1 where σ2 represents the assumed noise variance.

Most of sensors in nanopositioning applications operate at a narrow set of frequencies
F = {f1, f2 . . . fp} of the trajectory, where the frequencies are well known (such
trajectories are e.g. triangular scan signals). Despite the linear model, the response
onto input trajectories containing multiple frequencies can be simulated (principle of
superimposition) to improve position estimation compared to only measurements.

u

reference

add2add

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

plant

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

discrete Kalman filter

2

2

Scope1

measurement

noise r

input

noise w 

Step

x

x^

Figure 3.6: Steady state Kalman filter in Simulink together with actuation system
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Figure 3.7: Step response of actuation system and Kalman filtered signals (estimation)

(a) measurement fusion (b) estimation fusion

Figure 3.8: Fusion levels for Kalman filtering (taken from [15])

71



3 Fusion

3.3.3 MISO Kalman filter

Assuming there are two sensors with time invariant observation matrices C1,C2 each
of dimension (1× n) representing an n-th order SISO system for each. Measurement
noise v1 and v2 is assumed to be not correlated, i.e. E(v1jv2

T
k ) = 0 for ∀j, k, although

in practice some correlated noise might be caused by the common actuation system.
As it turns out by targeted measurements, this is one of the limiting factors (next to
non-linearities) limiting the performance of filtering.

The sensors have a certain variance6 expressed by var(v1) = σ2
1 and var(v2) = σ2

2,
respectively. Fusion takes place at measurement vector level, as illustrated in Figure
3.8a. The two sensors are considered as one group of sensors with augmented observation
matrix C̄ so that the Kalman filter filters them according to their variance, independently
of each other. [

y1k
y2k

]
︸ ︷︷ ︸
ȳk∈R2

=

[
C1

C2

]
︸ ︷︷ ︸
C̄∈R2×n

xk +

[
v1k
v2k

]
︸ ︷︷ ︸

v̄k

(3.15)

The Kalman filter is designed for augmented MISO system with measurement noise
covariance matrix

R̄ =

[
σ2
1 0
0 σ2

2

]
(3.16)

expressing that cross-covariances are zero. The Kalman gain is of dimension K ∈ R
n×2

where each column of it represent the weighting of individual measurements made by
the two sensors towards predictions. Implementation results are presented in Section
3.3.7.

3.3.4 Weighted input Kalman filter

Another approach to fuse sensors is to consider each measurement made by each sensor
as a separate and independent realization of a Kalman filter, as illustrated in Figure
3.8b. The displacement s is estimated by

sk = y1k +
σ1

2
k

σ1
2
k + σ2

2
k︸ ︷︷ ︸

h(·)

(y2k − y1k) (3.17)

by weighted sum of filtered sensor signals y1 and y2 according to their variance. One
major benefit of this method is that ssKF can be designed in advance, only (3.10), (3.11)
and (3.17) need to be computed online. However, it is possible to weight independent
sensor estimates individually by h(ϑ) or h(s) according to a temperature varying or
position7 varying variance of the one or other sensor. It is an alternative way to acquire
the non-linear system and filter with the so called Extended Kalman Filter (EKF).

6 Variance var(·) ∈ R is the one-dimensional equivalent to covariance cov(·) ∈ R
r×r of an r-dimensional

vector.
7 h(s) is typical for e.g. magnetic sensors, since the unbalanced bridge has higher variance than a

balanced. Optical sensors tend to have a lower sensitivity and higher variance when the saturation
of the photodiode is initiated (causing non-linearities).
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3.3 Kalman filter

3.3.5 Extended Kalman filter

Many practical systems can be approximated with time varying linear dynamics. For
such, extended Kalman filter is the common tool to estimate for states. For the system
described by

xk+1 = Akxk +Bkuk +Gkwk (3.18a)
yk = Ckxk + vk (3.18b)

with the same assumptions about the noise as before (3.8)

E[wkw
T
j ] =

{
Qk for k=j

0 else
(3.19a)

E[vkv
T
j ] =

{
Rk for k=j

0 else
(3.19b)

E[wkv
T
j ] = 0 ∀ k, j (3.19c)

and initial state estimation E[x0] = x̂0 and initial covariance matrix E
[
[x0 − x̂0] [x0 − x̂0]

T
]
=

P0, the following set of matrix equations provides the best minimum variance estimation.
The Kalman gain is computed by

Kk = P−
k C

T
k

(
CkP

−
k C

T
k +Rk

)−1 (3.20)

with update of states and covariance

xk = x−
k +Kk

(
yk −Ckx

−
k

)
(3.21a)

Pk = (I−KkCk)P
−
k (3.21b)

At last prediction of those is computed

x−
k+1 = Akxk +Bkuk, (3.22a)

P−
k+1 = AkPkA

T
k +GkQkG

T
k (3.22b)

The effort to invert a matrix increases in proportion to the square of its dimension.
There are some workarounds to avoid matrix inversion as needed for calculating the
Kalman gain (3.20), additionally to preserve symmetry of the error covariance matrix
Pk. These are summarized in [8].

Limitation of usage

Usually, a dynamic system is derived out of differential equations of motion and physical
relations, so that the elements of the state vector express physical dimensions e.g.
position, velocity and acceleration. Often these differential equations are non-linear,
and therefore, it is necessary to compute a linearization at each time step k. If the
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non-linear model exists, there are several ways for linearization, some of them are based
on the expansion of the function to Taylor-series and making an approximation.

However, even by knowing basic concepts of sensors, it is in general very hard to
model analytically the one or other peak, drop, or insensitivity as can be seen on many
transfer functions of different sensors acquired by measurements.

If a linear sensor model is acquired by identification, a time snapshot of the system
S 8 is recorded at a certain time t1, denoted by St1. Even if the acquisition is repeated
a second time causing St2 the transition T: St1

T→ St2 is not known. There is no known
method of my known to build a non-linear model out of multiple linear acquisitions. At
highest, the temporal development of transfer functions can be presented on waterfall
plots.

However, even if only St1 is known, the EKF brings some benefits with time
invariant model, compared to a ssKF. Covariance matrices Rk, (Qk) can be adopted
to e.g. position dependent noise levels of sensors Rk = g(xk, σ

2
vk
), which have to be

recorded in advance (or possibly even estimated in real time).

3.3.6 Kalman filter with noise model

In most of the cases, some more information about sensor noise can be unveiled than
only variance. For the LTI system

xk+1 = Axk +Buk +Gwk (3.23a)
yk = Cxk + vk (3.23b)

as (3.6) and (3.7), the sensor noise vk is modeled as

ξk+1 = Avξk + nk (3.24a)
vk = Cvξk (3.24b)

where nk is white noise of dimension l with appropriate matrices Av ∈ R
l×l, Cv ∈ R

q×l.
Combining (3.24) with (3.23) results in the augmented system [35][

xk+1

ξk+1

]
︸ ︷︷ ︸

x̄k+1

=

[
A 0
0 Av

]
︸ ︷︷ ︸

Ā

[
xk

ξk

]
︸︷︷ ︸
x̄k

+

[
B
0

]
︸︷︷︸
B̄

uk +

[
G 0
0 I

]
︸ ︷︷ ︸

Ḡ

[
wk

nk

]
︸ ︷︷ ︸
w̄k

(3.25a)

yk =
[
C Cv

]︸ ︷︷ ︸
C̄

[
xk

ξk

]
︸︷︷ ︸
x̄k

(3.25b)

for which ssKF can be designed according to Section 3.3 with stationary Kalman
gain K =

[
Kx Kξ

]T , and which can be applied and implemented with (3.10), (3.11).
However, due to practical considerations (unaccurate estimation of the noise’ amplitude

8 The system S = {Ak,Bk,Gk,Ck} of (3.18) denotes the informal collection of matrices.
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3.3 Kalman filter

and thus Kξ is very sensitive to the environment) the position is estimated by

yk = Cxk (3.26)

instead of (3.25b).
In order to profit from minimum variance estimation at time varying covariances

Q̄k =

[
cov(wk) 0

0 cov(nk)

]
∈ R

(n+l)×(n+l) (3.27a)

R̄k = cov(vk) ∈ R
q×q (3.27b)

EKF is implemented with (3.20), (3.21) and (3.22) for the third order actuator system
(3.12) with satisfying results.

Compared to the Kalman filter for white noise (Section 3.3.2) the augmented
Kalman filter with first order noise model (l = 1) of a low-pass9 the standard deviation
of estimation for a constant control input can be reduced additionally by 12%.

3.3.7 Verification

For perfect performance, the Kalman filter requires that the plant dynamics is known
exactly. Since the actuator and sensor model for what it was designed is the result
of an identification procedure with approximations, the best way to test for model
uncertainties is to implement the Kalman filter on a target (e.g. on a PS such as
STM32F407 as introduced in Section 2.2) with sensors connected over ADCs.

On the presented PS, SISO ssKF (as introduced in Section 3.3.2) for third order
model of actuation system can run up to a sampling rate of 500 kHz, so each 2μs
the position is estimated. This includes simultaneous sampling of one sensor and one
reference input with 16 bits resolution, scaling of ADC values, and computing equations
of measurement update (3.10) and time update (3.11).

The ±3σ-resolution of the GMR sensor for a 10 kHz measurement bandwidth can
be successfully improved from 20 nm to 4.1 nm (increase of resolution by a factor of 5)
by the presented Kalman filter. For a more detailed, sixth order model of the actuation,
the sampling rate lowers to 103 kHz under the above criteria, however, the resolution is
only slightly better since it is 4 nm for the same bandwidth of measurement.

For two sensors, by fusioning them either at measurement level (Section 3.3.3 MISO
Kalman filter) or at state vector level (Section 3.3.4 Weighted inputs Kalman filter)
sampling rate reduces to 368 kHz (by 27% compared to that with a third order model
of the actuator). By the simultaneous recording of the actuator’s movement with two
sensors (GMR and strain gauges (SG) as can be seen in Figure 3.9) and weighted inputs
fused Kalman filtering, the positioning accuracy could be significantly improved. Table
3.1 summarizes the statistical parameters.

9 One single pole at pl = −2π105 Hz, motivated from PSD in Figure 2.18.
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The process noise covariance is set to Q = cov(w) = 5×10−4 while measurement
noise variances are estimated out of the measurement and set according to σ2

unfiltered

in Table 3.1. The resulting Kalman gains

KGMR =

⎡
⎣−2.11× 10−4

1.74× 10−4

3.12× 10−4

⎤
⎦ ,KSG =

⎡
⎣−1.49× 10−5

1.28× 10−5

2.58× 10−5

⎤
⎦ (3.28)

yield a lower reliability in case of strain gauge sensor since ‖KGMR‖ ≈ 13‖KSG‖
due to non-linear effects as possibly originated by over-stretching the strain gauge’s
glue layer as it can be seen in Figure 3.9.
The Kalman filter can be made more robust to unmodeled noise and unmodeled
dynamics by increasing Qk in the design. This results in a larger covariance matrix
Pk, which involves a smaller gain K [36].

Figure 3.9: Kalman filtered sensors

σ2
unfiltered σ2

filtered σunfiltered σfiltered
factor of resolution

improvement

GMR 2.55× 10−4 6.08× 10−6 1.59× 10−2 2.46× 10−3 6.47
SG 3.79× 10−3 3.42× 10−6 6.15× 10−2 1.85× 10−3 33.2

Table 3.1: Statistics of implemented Kalman filtering



3.4 Robust filters

3.4 Robust filters

Unlike the Kalman filter, the technique presented in this section, can only be applied if
multiple sensors are measuring the target position simultaneously10. The aim of robust
filtering can be summarized as follows [1].

For each sensor a filter is designed, by complying the criterion that the frequency
response of the sum of all the filtered sensor signals is similar11 to a predefined transfer
function TW (s), called weight function. (First criterion on robust filters)

Since the PSD of noise is acquired in advance for each sensor12 and transfer function
models are fitted onto them, the resulting noise models can be included in the filter
design extending the performance of the Kalman filter. Usually, H2 and H∞-optimal
filters make use of the dissimilar frequency distribution of the sensor noise for different
types of sensors. The idea to weight the sensor signals according to their noise levels
particularly at the given frequency, (i.e. amplifying the sensor with lower noise more
than that with higher noise) is realized by robust filters such as the H2 and H∞-optimal
filters. (Second criterion on robust filters)

Among tools of filter design especially the methods of H2 and H∞ filter synthesis
provide a wide variability of opportunities i.a. satisfying the First and Second criterion
on robust filters.
In case of H2-optimal filtering the method to determine the filters is equivalent to solve
a quadratic cost function as the Linear Quadratic Gaussian (LQG) controller does.
However the design if performed in the frequency domain in contrast to the LQG where
the problem formulation is required to be performed the time domain.
One main advantage of H∞-filters is that they do not need any constraint about the
noise, unlike Kalman filters. They provide an optimal position estimation in terms of a
minimum sensor noise over all frequencies, unlike the Kalman filter which is intended
to minimize the mean of the squared position error of all frequencies.
One disadvantage of H∞-filters is that the quantity being minimized does not express
any physical dimension, not as the traditional Kalman filter where the quantity being
minimized is of the dimension of the position.
In followings definitions of norms are introduced, as well as the strategy to obtain H2

or H∞ filters is introduced divided into the problem formulation and filter synthesis
and at last filters are applied on practical problems and measurement results on a test
setup with multiple sensors are reported.

10 Although, this is not a general limitation, only in the extent of this thesis it can not be handled in
a more general way.

11 for methods of filter synthesis with analytical solution even equal...
12 By measurements as e.g. in Figure 2.17 for strain gauges or as in Figure 2.37 for the GMR sensor.
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3.4.1 Definitions

For a strict proper linear dynamic system with the transfer matrix

G(s) = C(sI−A)−1B (3.29)

the 2-norm denoted by ‖·‖2 is defined as [37]

‖G(iω)‖2 =
√

1

2π

∫ ∞

−∞
trace(G(iω)HG(iω)) dω (3.30)

where superscript H denotes the conjugate transpose. (The argument of trace is the
squared Frobenius norm of G(s).) Usually, the 2-norm is calculated by

‖G(iω)‖2 =
√

trace(BTQB) (3.31)

where Q is the observability Gramian, obtained by solving the Lyapunov equation [37]

ATQ+QA = −CTC (3.32)

The 2-norm represents the noise energy, since it is the mean of the root mean square of
the plant’s impulse response [36].

The infinity-norm denoted by ‖·‖∞ can be interpreted as the maximum singular
value (peak gain) of the plant across all frequencies (noise power) due to it’s definition
[37] extending (1.23) to

‖G(iω)‖∞ = max
ω

|G(iω)| = lim
p→∞

(∫ ∞

−∞
|G(iω)|p dω

) 1
p

(3.33)

The powerfulness of H∞ filtering is to minimize the worst-case estimation error over all
frequencies [36].

3.4.2 Problem formulation

As illustrated in Figure 3.10, the displacement x is measured simultaneously by two
sensors modeled as transfer functions S1(s) and S2(s). Due to a dissimilar gain and
phase of real sensor’s in general, inverse filtering of each needs to be done. It is realized
by filters F1(s) and F2(s) obtained as discussed in Section 3.1. From here on it can be
assumed that

S1(s)F1(s) ≈ 1, S2(s)F2(s) ≈ 1 (3.34)

is ensured over the entire frequency range of interest.
According to the model structure in Figure 3.10 it is assumed that the additive

noise enters the measurement as a position noise. The band limited noise is modeled by
filtering white noise with filters N1(s) and N2(s). The noise models are determined by
fitting transfer function models to the acquired noise PSDs. The PSD measurement of
the GMR sensor is shown in Figure 2.37 while that of strain gauges in Figure 2.17.
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The first order fitted models with one pole and one zero per each are determined to

N1(s) =
5.033× 10−15s+ 3.162× 10−5

1.592× 10−6s+ 1
(3.35a)

N2(s) =
10−6s+ 0.06283

s+ 62.83
(3.35b)

for the GMR sensor and for strain gauges, respectively. The frequency response can be
seen in Figure 3.13.

The strategy to make H2/H∞ filter synthesis possible is as follows. A MIMO system
P is augmented out of the noise models N1(s) and N2(s) as well as out of a tuning
function TW (s). The input consists of a vector w and a scalar u. The output consists
of the vector y and a scalar z in accordance to Figure 3.12.

• w = [w1, w2, w3]
T is the vector of weighted exogenous inputs [37].

• u is the control signal.

• z is the weighted exogenous output.

• y = [y1, y2]
T is the vector of measurements.

They can also be found in the model structure in Figure 3.11.

Figure 3.12: Generalized Plant [37]

To covert the equations obtained from the model structure in Figure 3.11 written as a
matrix equation13

[
yk

zk

]
︸︷︷ ︸
μk

s
=

⎡
⎣ 1 N1 0 0

1 0 N2 0
−TW 0 0 TW

⎤
⎦[wk

uk

]
︸ ︷︷ ︸

λk

(3.36)

to a state-space representation with vectors of new input μ and of output λ, the Linear
Fractional Transformation (LFT) is used. The LTI system is determined to

ξk+1 = Agξk +Bgμk (3.37a)
λk = Cgξk +Dgμk (3.37b)

13 with renounced argument s denoted by s
= as in [37]
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3.4 Robust filters

with matrices Ag ∈ R
3×3, Bg ∈ R

3×4, Cg ∈ R
3×3, Dg ∈ R

4×3 for the first order noise
models N1(s) and N2(s) according to (3.35a) and (3.35b) and the first order tuning
function TW (s) according to (3.41). Alternatively the Matlab command linmod()
can be used to obtain 3.37 from the model structure in Figure 3.11 which performs the
transformation, too.

As the next step, the matrices Ag,Bg,Cg,Dg are arranged in following structure
to obtain matrix P to

P =

⎡
⎣ Ag Bg 0

Cg Dg 0
0 0 −∞

⎤
⎦ ∈ R

7×8 (3.38)

For a good conditioned numerical computation it is necessary to find a truncated
balanced realization of the matrix P prior to filter synthesis [18], which can be computed
e.g. by the Matlab command sysbal().

3.4.3 Filter synthesis

The MISO filter K (commonly used term controller [37]) has as inputs the measurements
y and can influence P by the control signal u and the control equation u = Ky according
to Figure 3.12. The filter K is determined (synthesized) in the way, that some norm
(either the 2-norm or the ∞-norm) of the transfer matrix Gwz(s) is being minimized.

min
K

‖Gwz(s)‖2 = γ (3.39)

(E.g. here the 2-norm particularly.) It can be interpreted as that the filters K1(s)
and K2(s) in Figure 3.10 are determined by considering the First criterion on robust
filters. For the presented model structure the transfer function from displacement to its
estimation fulfills the criterion

Gxd(s) = G1(s)F1(s)K1(s) +G2(s)F2(s)K2(s) ≈ 1 =⇒ ΔGxd(s) � 1 dB (3.40)

(variability Δ according to (1.24)) up to a certain upper frequency limit which is
influenced by the weight function TW (s).
For the presented case the weight function TW (s) is found empirically by placing one
LHP-pole to 100 kHz and one LHP-zero to 10MHz, expressed by

TW (s) =
0.01 (s+ 2π × 107)

s+ 2π × 105
(3.41)

The H2/H∞-optimal filters K1(s) and K2(s) are derived from K. To compute K
there are two approaches.

(a) Solving the two corresponding Riccati equations [37] analytically. (exact-method)

(b) The Riccati equations can be reformulated to an optimization problem, and solved
iteratively with the method of Linear Matrix Inequalities (LMI). (LMI-approach)

In case of minimizing the H2-norm (a) is mostly possible for practical systems [37].
However when minimizing the H∞-norm (a) is only possible in some cases under
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restrictive prerequisites and by some simplifications. The iterative optimization by the
LMI-method (b) may deliver a (sub)optimal solution, however it does not require some
restrictive prerequisites [37].

The commands h2syn(), hinfsyn() or hinflmi() of the Robust Control
Toolbox can be used to compute the (sub)optimal filters.
If a filter K is found so that γ < ∞ the filters can be evaluated. For the presented
inputs, the H2-optimal filters K1(s) and K2(s) (realizable, strict proper) are determined,
given in continuous-time state-space representation by

K1
s
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎢⎣−6.28× 107 52.5 175

0 −6.09× 104 1.08× 106

0 1.08× 106 −1.98× 107

⎤
⎥⎦

︸ ︷︷ ︸
AF

x(t) +

⎡
⎢⎣ −39.2

−2.43× 105

4.31× 106

⎤
⎥⎦

︸ ︷︷ ︸
bF1

yn1(t),

yf1(t) =
[
−2.5× 105 0 0

]
︸ ︷︷ ︸

cTF

x(t)

(3.42)

K2
s
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
ẋ(t) = AFx(t) +

⎡
⎢⎣ −210

2.43× 105

−4.31× 106

⎤
⎥⎦

︸ ︷︷ ︸
bF2

yn2(t),

yf2(t) = cTFx(t)

(3.43)

where yn1(t) and yn2(t) are the noisy sensor signals as inputs to the filters and yf1(t) and
yf2(t) are the filtered signals as outputs of the filters. By the assumption of perfect com-
pensation (3.34) the transfer function Gxd(s) of (3.40) reduces to Gxd(s) = K1(s)+K2(s),
which can be evaluated shown in Figure 3.14.

All three poles of the filters are in the LHP located at

pH2 = {−6.28× 107,−1.99× 107,−1.98× 103}.
The spectral radii of the filters determine the minimal sampling frequency of the

discretized filters in order to avoid distorsion of the dynamics. The spectral radius ρ of
a matrix AF is defined as the maximum among the magnitudes of its eigenvalues,

ρ = max(|λi|) (3.44)

where λi are the eigenvalues of the matrix AF . For the filters (3.42) and (3.43)
ρH2 ≈ 6× 107 implies fast modes.

To implement the filters without distorting the dynamics significantly, they need to
be discretized and following criterion has to be met

fs > 2ρ (3.45)
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3.4 Robust filters

with sampling frequency fs according to Nyquist. This would require a sampling
frequency for the presented filters of at least 19MHz, which is considered in connection
with the ADC presented in Section 2.2 having a maximum of sampling rate of 2.5 MHz as
high. Techniques of model order reduction and elimination of fast modes are summarized
in Section 3.4.5.
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3.4 Robust filters

3.4.4 H2/H∞-optimal filtering with compensation for sensor

dynamics

Until now, the unequal sensitivities and dissimilar transfer functions of the used sensors
claimed for inverse filters as discussed in Section 3.1. It is very convenient if H∞ or
H2 designed optimal filters can also compensate for sensor dynamics modeled by the
transfer functions S1(s) and S2(s) besides satisfying the First and Second criterion on
robust filters.

The aim of this section is to find filters K1(s) and K2(s) so that the interconnection
as shown in Figure 3.15 makes transfer function

Gxd(s) = S1(s)K1(s) + S2(s)K2(s) ≈ 1 (3.46)

over a wide range of frequencies with a phase close to 0◦ similar to (3.40) as before.

The two sensor models arises from first order approximation of the GMR and strain
gauge sensors to

S1(s) =
1.592× 10−7s+ 0.1

1.592× 10−4s+ 1
(3.47a)

S2(s) =
8.754× 10−9s+ 0.55

1.592× 10−5s+ 1
(3.47b)

as shown in Figure 3.17. The make the compensation of sensor dynamics possible, S1(s)
and S2(s) are included in the design, extending the model structure from as presented
in Figure 3.11 to the model as can be seen in Figure 3.16. The noise models N1(s) and
N2(s) are still given by (3.35a) and (3.35b) and the weight function TW (s) by (3.41),
respectively.

The resulting H2-optimal filters K1(s) and K2(s) are of fourth order in comparison
to the third order filters as in the section before. They include a term for compensation
of the sensor dynamics and further one which is a noise dependent filtering, however they
can not be separated as before (Figure 3.10). The filters are given in continuous-time
state-space representation as in (3.42) with matrices

AF =

⎡
⎢⎢⎣
−1.18× 108 −1.78× 108 −6.58× 106 1.97× 105

2.54× 106 −5.38× 107 −6.43× 106 5.69× 104

−8.85× 107 −2.9× 108 −3.47× 107 3.18× 105

−1.74× 10 −5.55× 10 −6.65× 109 6.08× 107

⎤
⎥⎥⎦

cTF =
[−9.29× 104 1.01× 104 188 −2.73× 10−5

]

bFS1 =

⎡
⎢⎢⎣
−8.44× 104

1.76× 105

9.36× 105

1.8× 108

⎤
⎥⎥⎦ ,bFS2 =

⎡
⎢⎢⎣
−1.06× 106

−3.06× 105

−1.71× 106

−3.27× 108

⎤
⎥⎥⎦

(3.48)

It can be seen, that all four poles are in the LHP located at

pH2F = eig(AF) = {−6.28× 107,−6.28× 107,−1.99× 107,−1.99× 103}
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and in consequence the filters have a spectral radius of ρH2F ≈ 6 × 107. The filters
are BIBO stable, as it can be also seen out of the step response in Figure 3.18. The
Bode diagram of the filters K1(s) and K2(s) (3.48) are shown in Figure 3.19 as well
as of the filtered sensors in Figure 3.20. In the last one the transfer function of the
summed filtered signals Gxd(s) is also shown which satisfies the criterion ΔGxd � 1 dB
with Gxd(s) of (3.46) in the frequency range [10Hz, 1MHz], at least in the numerical
simulation. The difficulties of fast modes are discussed in Section 3.4.5.

To minimize H∞-norm of the transfer matrix Gwz(s) of the generalized plant in
Figure 3.12 there are two appoaches as already introduced. With identical assumptions
as for the H2 synthesis the exact method (a) solving the Riccati equations analytically
yields a γ = 7.8× 10−3, while the LMI-method (b) shows even a bit higher performance
in terms of γ = 2× 10−3. The exact-method (a) places the poles of the filters identical
to H2-optimal filters (3.48), i.e. to

pH∞Fa = pH2F = {−6.28× 107,−6.28× 107,−1.99× 107,−1.99× 103}

while the LMI-approach solved H∞-filters have poles at

pH∞Fb = {−6.28× 107,−9.153× 106,−3.46× 105,−733}

The largest poles are identical, however all the others are not even close to each other.
The filters for (a) and (b) are remarkably different as can be seen by comparing the
Bode diagrams in Figure 3.21a and 3.21b. The poles obtained by the LMI method
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pH∞Fb do not even strive the poles pH∞Fa even when the abortion criterion for the
iterative optimization is made more strict.

Furthermore, it can be observed, that both H2-optimal and H∞-optimal filters
obtained by solving the Riccati equations analytically (a), shows at 300 Hz (where the
noise level of the sensors are equal) also an intersection of the filters’ transfer function.
The LMI-solved H∞-filters (b) do not show this kind of behavior. To investigate the
effectiveness of filtering, the H∞ obtained filters are implemented on the multisensor
system of Section 2.1 in followings.
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Figure 3.21: H∞-optimal filters and filtered sensors
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3.4 Robust filters

3.4.5 Verification

To acquire dynamic properties of the sensors, an actuator and an amplifier (actuation)
are indispensable. The components of the test setup (as introduced partly in Figure 2.1)
can be seen on a photo in Figure 3.22 which shows the arrangement of the components
used for the verification.

Figure 3.22: Photo of the setup: piezoelectric actuators (A), spacer (E), actuated
permanent magnet (C), strain gauge sensors (B) and GMR sensor (D) are
fixed to a granite stone.

Stacked piezoelectric actuators (A) are glued to a balance made of granite with a
mass of 71 kg. It is chosen to be as large and heavy to provide sufficient damping of
excitation forces initiated by the piezoelectric actuator especially at high frequencies.
The permanent magnet (C) with a weight of 0.47 g is attached through the polyethylene
spacer (E) with cross section of ca. 16mm2, length of ca. 2mm, Young’s modulus
0.7GPa [25] and therefore a stiffness of ca. 5.6 kN/m on top of the actuator (A).
Despite the compact design, the finite stiffness of the spacer and the not negligible
mass of the permanent magnet creates additional resonance at about 550Hz so that
elements A+E+C can not be modeled as one stiff body14. The vibrometer measures
the elongation of the piezo actuator in the middle of the concave front of (C).

Figure 3.23 shows the measured frequency response of the system including the actu-
ation and the sensors. Since the transfer function of the actuation has a −20 dB/decade

14 In consequence, the strain gauge sensors (B) and the GMR sensor (D) are out of phase and they
are measuring some projection of the piezo’s true elongation. Transversal resonance and other
unmodeled effects cause remarkable non-linearities and higher modes
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slope and also some parasitic dynamics as shown in Figure 2.6, it can not be neglected if
the sensors’ frequency response have to be acquired. Therefore, a relative measurement
using the network analyzer HP4395 with the vibrometer as a reference sensor, makes it
possible to acquire only the transfer function of the sensors. It is as if the actuation
would be corrected for a constant amplitude of excitation over a wide frequency range.
It is theoretically equivalent to the method, if the frequency response of the actuation
would be recorded separately and then substracted from the acquired system’s response
(actuation and sensors) as well in magnitude as in phase. This is verified and provides
approximately the same results until a certain SNR is violated.

The sensors’ transfer functions and the fitted models can be seen in Figure 3.24.
The model fitting is supported by the System Identification Toolbox of Matlab
and state-space models of 8th order are chosen to fit to the measurement properly (in
terms of mean square estimates (MSE) of 0.88 and 0.91 for the GMR and for strain
gauges, respectively). They are given by the differential equations

S1
s
=

{
ẋ(t) = A1x(t) + b1u(t)

y(t) = cT1 x(t)
(3.49a)

S2
s
=

{
ẋ(t) = A2x(t) + b2u(t)

y(t) = cT2 x(t)
(3.49b)

where S1(s) is the model of the GMR sensor and S2(s) that of the strain gauge sensor,
respectively. The matrices are

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.51×104 1.76×105 −4.36×104 1.19×104 −8.92×104 2.32×104 7.87×104 −1.32×105

−1.15×105 −2.3×104 1.71×105 −1.29×104 7.38×104 −1.22×104 −9.27×104 9.42×104

−1.62×104 −1.13×105 −2.11×104 4.82×104 −7.64×104 2.7×104 4.06×104 −1.4×105

621 7.05×103 −3.16×104 897 3.7×104 −3.09×103 −3.48×104 4.78×103

1.48×104 6.43×103 3.25×104 −1.06×104 −1.83×104 2.61×104 3.41×104 −2.21×105

−3.03×103 −2.95×103 −6.94×103 1.56×103 2.75×103 −2.6×103 −1.4×105 3.89×104

−456 3.07×103 −1.27×103 2.38×103 −1.2×104 1.08×105 −761 2.83×105

−1.3×103 −1.82×103 −895 −301 1.27×104 −7.99×103 −4.51×104 −9.34×104

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b1 =
[−262 −619 −516 −69.4 247 −44.3 71.8 −28.1

]T
cT1 =

[−267 239 −215 55.5 −257 81.5 260 −548
]

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.04×104 9.86×104 2.37×104 2.16×104 3.15×104 −2.4×104 −2.3×104 2.95×104

−7.04×104 −1.83×104 −4.93×104 −3.88×104 −5.36×104 2.5×104 3.07×104 −4.28×104

2.54×103 8.14×103 −7.53×103 −1.62×105 −8.13×104 5.75×104 4.82×104 −3.8×104

2.97×103 8.39×103 1.22×105 −1.23×104 −1.8×104 6.15×104 1.52×104 −2.72×104

3.77×103 9.44×103 2.55×104 −1.82×104 −2.65×104 1.27×105 2.2×104 −3.88×104

2.48×103 3.48×103 −2.77×104 −3.78×104 −9.26×104 −1.12×104 −1.14×105 4.79×104

−1.19×103 −2.84×103 −1.97×103 5.8×103 9.66×103 9.18×104 −7.53×103 2.25×104

1.14×103 2.03×103 −3.65×103 −7.23×103 −1.1×104 −1.61×104 1×104 −2.27×104

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b2 =
[−3.1 −469 215 −2.96 70.9 90.8 −88.1 60

]T
cT2 =

[−144 194 188 167 241 −149 −163 212
]
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The noise PSDs of the sensors are recorded in the analogue domain using the
network analyzer HP4395 resulting in the measurement shown in Figure 3.25. They
show that strain gauges have in average a lower noise level for the setup with parameters
as in Table 2.3, amplifier gain 33.5 dB of strain gauges and 40 dB for the GMR sensor
which are chosen to ensure approximately the same sensitivity for displacement.

The signals are also recorded using the simultaneous sampling data acquisition
device U2542A15 including synchronized sampling 16 bit ADCs. The histograms of the
detrended (mean free) voltages for a 104-point sample, sampled at 200 kHz (in total
50ms) are visible in Figure 3.26. It is expected that the sensor noise is normally dis-
tributed. The reason why in case of stain gauges the least squares fit of the distribution
differs from the Gaussian bell is not fully investigated. It is assumed to arise from
disturbance voltage, because the uniformly distributed quantization noise of the 16 bit
ADC with ±1.25V range is determined by the LSB whic are ca. 38μV.

To estimate the PSDs, the spectrum is averaged out of 40 spectra computed from
103 samples each, sampled uniformly at 200 kHz. The averaged PSDs are shown in
Figure 3.26. They let us recognize roughly the same, strain gauges have less noise over
all frequencies. Furthermore, it can be seen that some dominant characteristics of the
transfer functions in Figure 3.24 can also be found in the PSDs. Especially, for strain
gauges around 13 kHz some increase of the intrinsic background noise as well as a peak
in the transfer function at that frequency can be observed. It is assumed that the
resonance is excited even by white noise.

The noise power p(F ), the noise voltage v(F ), and hence, the resolution of
the sensors r(F ) (RMS) in the corresponding bandwidth F = [1 kHz, 100 kHz] are
determined to

sensor S p(F ) v(F ) r(F )

GMR 59.5V/m 6.20μW 2.49mV 41.85μm
SG 86.9V/m 3.87μW 1.97mV 22.67μm

Table 3.2: Noise and RMS-resolution of sensors before filtering.

The PSDs of the sensors are approximated with first and second order linear models,
found by pole placement, and thus, given by

N1(s) =
100(s+ 103)

(s+ 100)(s+ 106)
(3.50a)

N2(s) =
300

(s+ 107)
(3.50b)

15 16 bits, 500 kSPS at maximum, Agilent Technologies, Santa Clara, CA, USA.
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Figure 3.23: Bode plot of sensors including actuation dynamics
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H∞-optimal filter design

A balanced, minimal-phase, stable realization of all input models (sensor models and
noise models) and thus, of the augmented system described by the matrix P according to
(3.38), is a necessary, but not a sufficient condition for the Riccati-solved H∞ synthesis
(exact-method) [18]. For the LMI-solved H∞ problem it is already a sufficient condition
for practical systems [37].

H∞ filter design yields filters of 20th order for the presented input models. The
distribution of the state energy is expressed by the Hankel values, plotted in Figure
3.27. Due to the logarithmic display of the energy it can be assumed that at least 7
states (labelled with 14 to 20) can be neglected, the performance of filtering will not
degrade remarkably.

The model order reduction is preferred over slow and fast mode decomposition.
After eliminating 10 states of K1(s) and 9 states of K2(s) no major difference on the
Bode diagram of the filters can be observed. The resulting filters KR1(s) and KR2(s)
are shown in Figure 3.28.

In order to implement the filtering on a processing system (PS) with finite sampling
time, in the next step the discretization of the filters is performed. The bilinear transform
by Tustin is one of the most faithful approximations of the continuous-time filters in the
frequency domain, much better than a Zero-Order-Hold. Therefore, filters are discretized
using the Tustin transform, computed by Matlab command c2d(·, ·,’tustin’) and
sampling frequency fs = 500 kHz, since this is the maximum of the DAQ unit. The
resulting discrete-time filters K1d(z) and K2d(z) are also shown in Figure 3.28.

Lastly, the discretized filters K1d(z) and K2d(z) are applied on the sensor signals
and the performance of filtering is verified by measurements. The filtering takes place
in the time domain, computed by Matlab command lsim(). However to compute
a Bode diagram as well the sensor signals as the filtered sensor signals have to be
transformed to the frequency domain. The discrete Fourier transform (DFT) (1.29) is
used and the Bode diagram is computed sequentially (offline) given by

T (iω) =
F(hann(yk))

F(hann(xk))
(3.51)

where F denotes the m-point discrete Fourier transform of the hanning windowed time
signals yk of output (filters) and xk of input (sensors) at discrete time steps k = 1..m
implemented by the 2(log2(m)+2)-point fast Fourier transform (FFT) algorithm for the
zero padded windowed time signals. The phase ∠T (iω) is defined by (1.27) and it is
computed by the four-quadrant inverse tangent realized by the Matlab commands
atan2() or angle().

The measurements, presented in Figure 3.29, show the sequentially acquired Bode
diagrams of the filtered sensors as well as the total transfer function

Tsum(z) = S1(z)K1d(z) + S2(z)K2d(z) (3.52)

acquired in the frequency range F1 = [500Hz, 250 kHz] out of 150 logarithmically
spaced discrete steps of frequencies by recording each time 105 samples, uniformly
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3 Fusion

sampled at 500 kHz. It can be seen, that the variability of the summed transfer function
is ΔTsum(F2) < 14 dB for F2 = [500Hz, 100 kHz] compared to the variability of the
sensors with at least 50 dB in F2 as in Figure 3.24. It should be noted that the
effectiveness is not as perfect as in the simulation in Figure 3.20. The deviation, despite
to the good fitted sensor models, is assumed to arise from the temporal or thermal
change of the test setup, as a position dependent sensitivity of the magnetic sensor.

Evaluation

It can be shown that the H∞-optimal filtering of the two sensors each having excessive
peaks in the transfer functions up to 30 dB are mostly compensated (up to 6 dB remains)
and, thus the bandwidth of control is also enlarged.

According to the computed PSDs in Figure 3.30 the resolution of the fused sensor
signal seems to be even worse than that of a single sensor. This is only a pretense, as
the filters K1d(z) and K2d(z) have an amplification > 0 dB for all frequencies above
≈ 100Hz, as the filters are designed for16. Hence, the noise gets amplified, too.

Instead of evaluating filter performance out of noise densities the Signal-to-Noise
ratio (SNR) is computed. It is defined by the relationship between power quantities

SNR = 10 log

(
psignal
pnoise

)
(3.53)

in units of 1 dB where psignal is the power of the sine wave delivered by the sensor
(squared RMS voltage) and pnoise is the average power of noise in the specified band.
Figure 3.31 clearly shows that the SNR of the filtered sensor signals is at almost all
frequencies below 30 kHz greater, and hence better than that of a single sensor. It
allows to state that the resolution of the fused signal can be successfully improved by
a factor of 2.51 (by 8 dB in terms of power) in average to 9.03μm, compared to that of
a single sensor having a resolution of 22.67μm for the presented setup in the bandwidth
of 30 kHz.

The presented method of sensor fusion, prefers always the sensor with lower noise
(up to a certain complexity depending of the filter’s order). For the presented com-
bination of sensors (strain gauges and GMR) with no intersection of the PSDs the
true power of H∞ filtering is not as remarkable in terms of noise reduction as for the
presented example in Section 3.4.4.

By evaluating the poles and zeros of the filters KR1(s) and KR2(s), it can be con-
cluded that the thermal drift of the GMR sensor (sensor 1) is damped at least by 40 dB
at 1 Hz, so almost no offset error of the GMR sensor distorts the position estimation.

A further example illustrates the case, if the actuation dynamics is also included
in the modeling, and H∞-filters compensate for that, too. The frequency response is
16 It should be noted, that the frequency response in Figure 3.24 is recorded with the factor of

500 nm/V and the measurement in Figure 3.29 is done with the scale factor of 5μm/V because
of practical reasons, causing a shift of −20 dB of the transfer functions compared to the plot in
Figure 3.29.
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presented in Figure 3.32. The resulting transfer function sum(s) has in the frequency
range of F2 = [10Hz, 10 kHz] a variability of Δsum(F2) = 7 dB and an unintended
large phase lag possibly originated from modeling uncertainties.

The presented method of optimal filtering as discussed in Section 3.4 can be extended
to more than two sensors. Preferably taking a capacitive, an optical and a magnetic
sensor can provide a more reliable estimation of the true position as disturbances in
the magnetic field (e.g. caused by mains, switched transformers, etc.) usually do
not influence equally e.g. magnetic and capacitive sensors. It is useful to extend
the presented method of optimal filtering to as much sensors as possible, as even an
additional sensor with the same SNR as all the others increases theoretically the SNR
of the fused signal by 3 dB. The theoretical enhancement of the SNR concerning fusion
is summarized in Table 3.3. It assumes perfectly correlated signals and uncorrelated
noises17.

17 The fourth column can be interpreted as the addition of two sensor signals with the properties
owning that of Sensor A.

100



3.4 Robust filters

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5
|M

ag
ni

tu
de

| (
dB

)

sensors

 

 
GMR
SG

10
2

10
3

10
4

−200

−150

−100

−50

0

P
ha

se
 (

°
)

Frequency (Hz)

−35

−30

−25

−20

−15

−10

−5

0

5

|M
ag

ni
tu

de
| (

dB
)

filtered sensors

 

 

GMR
SG
sum

10
2

10
3

10
4

−400

−300

−200

−100

0

100

200

300

P
ha

se
 (

°
)

Frequency (Hz)

Figure 3.32: Bode plot of sensors together with actuation (left) and effect of noise-
optimal H∞-filters and resulting fusion (right)

sensor A sensor B
A+A

(additive fusion)

A+B

(additive fusion)

signal power ps v2A v2B (2vA)
2 (vA + vB)

2

noise power pn pA pB 2pA pA + pB
ps
pn

v2A
pA

v2B
pB

2v2A
pA

(vA + vB)
2

pA + pB
:= r

SNR = 10 log
ps
pn

SNRA SNRB SNRA + 3 dB 10 log(r)

Table 3.3: SNR enhancement for two sensors with assumed perfectly correlated
signals and uncorrelated noise.



CHAPTER 4

Summary and outlook

An attempt has been made to treat the problems and challenges in sensor filtering
and sensor fusion throughout the entire circumference of the present thesis by a
methodological approach. I was guided by the the principle of G. H. Hardy, namely

Sometimes one has to say difficult things, but one ought to say them as
simply as one knows how.

by preserving the scientific language of argumentation.

4.1 Summary

It is shown that by the fusion of two sensor signal’s (GMR magnetic sensor AA002 and
strain gauges FAET-A6347Q) with H∞-optimal filters the thermal drift of the GMR
sensor is practically eliminated. In addition the sensor’s bandwidth is extended from
10 kHz (of the fast sensor) to 30 kHz. Furthermore, the resolution is improved by 151%
from 22.67μm to 9.03μm for the 30 kHz measurement bandwidth.

Also the Kalman filter augmented with a noise model of a sensor provides an
enhancement of resolution up to a factor of 6 by explicitly using the third order model
of a sensor. Other profits of sensor fusion are the increase of disturbance rejection.

4.2 Contents

• Chapter 1 introduces linear systems and the corresponding properties and tools
on the language of mathematics, which are indispensable in order to analyze,
evaluate and verify linear sensor models. The chapter also motivates the Reader
to consider to filter and fuse sensor signals in order to increase the accuracy of a
position controlled systems and extend the bandwidth of control.
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• Chapter 2 gives an overview of some of the available principles to measure displace-
ment. It reports the results of the characterization of some of the available sensors
of today’s technology and their parameters derived out of the measurements, such
as resolution, bandwidth, range, etc. In Section 2.1 the test setup is introduced,
which is needed for characterizing sensors. Section 2.2 shows the data acquisition
system based on a real time processor, which is used to evaluate filters under real
conditions. Section 2.8 lists key parameters of the characterized sensors, to enable
a quick comparison.

• Chapter 3 covers some basic principles to filter data in order to lower noise and
also to fuse data of multiple sensors. Complementary filters in Section 3.2, various
Kalman filters in Section 3.3 and noise-optimal filters in Section 3.4 are discussed,
with their prerequisites, operation principles, advantages and disadvantages for a
given application as well as implementation results to enable a quantification of
performance improvement mainly in terms of resolution and bandwidth.

4.3 Outlook

Combining noise-optimal filters with a Kalman filter

The Kalman filter minimizes the mean square error of state estimates, while H∞
filters the worst case error. For designing a Kalman filter, noise covariances need to
be estimated, however for H∞ filter synthesis they are not necessary, although PSD
of sensor noise is required. Since noise variance and especially covariances between
elements of the state vector (process noise) are more or less found by tuning1 the method
of optimal filtering is more straight forward from that aspect of view. For a general
strategy of synthesizing noise-optimal filters, the LMI-method solved H∞ synthesis
should be preferred, since there are very few requirements on input models.

It should be noted, that the presented filtering in Section 3.4, titled Optimal filters,
is a very basic and probably the most simple application of robust control without
realizing any control. The focus is set to estimating the position as accurate as possible
from an available set of sensor signals and linear models. The tools of filter design in the
Hardy space enable the integration of a sort of Kalman filters right within the design,
and offers much more possibilities compared to a filter design in the state-space [37].
Despite this, to preserve simplicity in design, a combination of model based filtering
(Kalman filter) and noise-optimal filtering, as until now separately introduced and
implemented, are proposed in followings.

In order to use benefits of minimal noise and advantages of model based filters,
noise-optimal filters are combined with a linear MISO Kalman filter as shown in
Figure 4.1. Filters K_S1 (s) and K_S2 (s) are designed according to Section 3.4.4 to
compensate for unequal and uneven sensitivity of sensors (such as model inversion as in
Section 3.1) to provide an optimal fusion of those in the manner that some norm of
individual noise transfer functions are minimized2. For the filtered system, including
actuation dynamics with transfer function Tuy(s) (according to Figure 4.1), either a

1 Or at least they are in lots of cases a result of an empirical process.
2 Either the 2-norm, the ∞-norm or a combination of these, called mixed sensitivity filters.
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ssKF or a non-linear Kalman filter (EKF) can be designed to handle non-linearities
of piezoelectric actuators (such as hysteresis or creep) and known non-linearities of
displacement sensors (such as the thermal drift).

u

displacement x

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

actuator dynamics

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

discrete Kalman filter

2

2
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filter1
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reference trajectory

(control input) u
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 sensor 1

 dynamics

G_S2

sensor 2

dynamics

y

Figure 4.1: Model based estimation with noise-optimal filtered sensors

Advanced methods of filters and fusions

More advanced methods of filtering are available with more effort to design and to
implement in order to get a more accurate position estimation in real time [36].

(a) The Moving Horizon Estimation (MHE) as an optimization approach to estimate
unknown parameters seems promising in some cases [29]. Each time step a linear
program or even a non-linear program is solved and prediction of states is based on
the solution. Usually it requires a higher computational effort than deterministic
approaches such as the Kalman filter. To use a MHE an accurate analytic system
model is needed with understanding of as many sub-dynamics, which excludes the
usage of a sensor model acquired by measurements and black-box model fitting
[9].

(b) In case of simultaneously using multiple sensors to acquire a position, more
advanced fusion algorithms are available if the equations for the integration of
these measurements into a common state estimate are explicitly derived.

(c) Two stage robust Kalman filters might further improve the position estimation
accuracy in the presence of model uncertainties [7].

(d) Some practical systems have a non-linear state update or non-linear measure-
ment equations, therefore Unscented Kalman Filter (UKF) might bring benefits
compared to linear minimum variance estimators if non-linear system dynamics
ẋ(t) = f (x(t),u(t), t) is known. The potency of the UKF is in expansion of the
system dynamics to Taylor series yielding a linear equation for error propagation.

(e) Validation gates rejects outlier measurements, resulting in a more reliable esti-
mation [15]. It would be worth to investigate validation gates, or in general the
particle filter for position estimation.

104



4.3 Outlook

(f) In case of using the traditional Kalman filter, some assumption about noise
distribution have to be met. If either process noise w or measurement noise v or
both are skewed or otherwise pathological a Bayesian filter or particle filter might
be useful.

(g) Kalman filters for unknown trajectories can deal with non-linearities, as proposed
by [6]. They require at least a partially known system with some assumptions
about the unknown input. According [6] they can estimate for input bias, as this
is a well known phenomena for piezoelectric actuators as well as for some type of
sensors.

(h) Non causal filters such as Kalman smoother were not handled since the usage in
closed loop control is questionable, although some of them can be implemented
with constant phase lag [29].

(i) Even a simple low-pass filter ẋ = −x might be of interest. It is known, that it
reduces noise by limiting the bandwidth. However, one major advantage when
using such a filter is, that unknown system can be time-variant or even non-linear,
no errors are made since there is no system model behind it.

à la fin
Daniel Piri 2014
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Appendix

1 Kalman filtering in Matlab

The LTI discrete-time dynamic system (actuation including sensor) is given by

xk+1 = Axk +Buk +Gwk

yk = Cxk + vk

with input u ∈ R
p, measurement y ∈ R

q and random variables w ∈ R
r, v ∈ R

q with
restrictions of being white noise with normal distribution and zero mean, uncorrelated
to each other, with covariances

cov(w) = Q ∈ R
r×r

cov(v) = R ∈ R
q×q

representing process and measurement noise, respectively. Matrices have appropriate
dimension A ∈ R

n×n, B ∈ R
n×p, G ∈ R

n×r, C ∈ R
q×n.

The Kalman Filter (EKF) is given by the following function with inputs u (control
input, reference trajectory) and y (noisy measurement) and outputs est (estimation of
displacement), states, and 2-norm of covariance matrix P.

function [est,normP,states] = kalman(u,y,par)
% inputs u (control trajectory)
% y (noisy sensor signal)
% struct p holds system parameters
% outputs est (output estimation)
% normP (2-norm of covariance matrix P (for observing performance))
% states (state vector)
persistent x P

A = par.A; % system matrix (n,n)
B = par.B; % input matrix (n,1)
C = par.C; % output matrix (1,n)
Q = par.Q; % covariance of process noise (1,1)
R = par.R; % covariance of sensor noise (1,1)
G = par.G; % process noise is related to input, G = B was set

111



Appendix

if isempty(x)
x = pinv(C)*y;
P = pinv(C)*R*pinv(C');
disp('initial vectors set')

end

% Compute Kalman gain factor:
K = P*C'*inv(C*P*C'+R);

%Kalman measurement update
x=x+K*(y-C*x);

%covariance update
P = (eye(3)-K*C)*P;

%prediction for state and covariance
x=A*x+B*u;
P = A*P*A' + G*Q*G';

%output estimation
est=C*x;

normP = norm(P,2);
states = x;

end

2 H2, H∞ filter synthesis in Matlab

For the sensors with continuous-time transfer function models TF_S1 and TF_S2 as
well as noise models N_S1 and N_S2 the H2 (case 1) or H∞ filters (exact: case (a),
LMI-method: case (b)) are computes as follows:

clear all;
clc;

% plot settings
bode_opt = bodeoptions;
bode_opt.mapCSTPrefs;
bode_opt.FreqUnits = 'Hz';
bode_opt.PhaseVisible = 'off';
bode_opt.Xlim = [10^1, 10^7];
bode_opt.Grid = 'on';

% weight defines
N_S1 = getSensorModel_1(); % Noise transfer function of 2nd order in state space
N_S2 = getSensorModel_2(); % Noise transfer function of 2nd order in state space
T_W = zpk([-1e6*2*pi],[-1e5*2*pi],1e-1); % Weight for fine tuning

% transfer functions
W0 = 1E3*2*pi;
W1 = W0*100;
TF_S1 = 0.1 * tf([1/W1 1],[1/W0 1]);
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W0 = 1E4*2*pi;
W1 = W0*1E3;
TF_S2 = 0.55 * tf([1/W1 1],[1/W0 1]);

subplot(2,1,1); cla
bode_opt.Title.String = 'Weights and Sensors';
h=bodeplot(N_S1,N_S2, TF_S1, TF_S2, T_W, bode_opt);
set(findobj('type','line'),'LineWidth',2);
legend show;

% General plant definition
[Ga,Gb,Gc,Gd] = linmod('generalizedModel_m4');
disp(size(Ga))
G = ltisys(Ga,Gb,Gc,Gd);
[G, Gsig] = sysbal(G);
[Ga,Gb,Gc,Gd,Ge] = ltiss(G);
G = ss(Ga,Gb,Gc,Gd);

if 0
% H2 Riccati (case 1)
[gopt, K] = h2syn(G, 2, 1);

elseif 1
% Hinf Riccati (case a)
[K,CL,GAM, INFO]=hinfsyn(G, 2, 1);

elseif 0
% Hinf LMI (case b)
[gopt, K] = hinflmi(G, [2, 1]);

end

% Post processing
K_S1 = K(1); % Transfer function from S1 to Est
K_S2 = K(2); % Transfer function from S2 to Est

% time continous full orded filters
series_1 = series(TF_S1,K_S1); %filtered sensor S1
series_2 = series(TF_S2,K_S2); %filtered sensor S2
K_total = series_1 + series_2;

% plot filters
figure;
bode_opt.Title.String = 'Filters';
bode_opt.PhaseVisible = 'on';
bode(K_S1, K_S2, bode_opt);
set(findobj('type','line'),'LineWidth',2);
legend show;

% plot filteres sensors
figure;
bode_opt.Title.String = 'Filtered sensors';
bode(series_1,series_2,K_total,bode_opt);
set(findobj('type','line'),'LineWidth',2);
l=legend('$G_{yf1,x}(s)$','$G_{yf2,x}(s)$','$G_{\hat{x}x}(s)$');
set(l,'Interpreter','Latex');

figure; step(K_S1,K_S2) % step response of filters
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figure; pzmap(K_S1,K_S2) % pole-zero map of filters

figure; bode(TF_S1,TF_S2,bode_opt); % TF of sensors

%model order reduction
bode_opt.MagLowerLim=-20;
clc;
close all;
figure('OuterPosition',[50 50 900 750]); %[left, bottom, width, height]
SPS = 500e3;

[K_R1, dK1] = FilterSimplify(K_S1,SPS,1e-1);
[K_R2, dK2] = FilterSimplify(K_S2,SPS,1e-1);
bode_opt.Title.String = 'Filters';
bode_opt.PhaseVisible = 'on';

bodeplot(K_S1, K_R1, dK1, K_S2, K_R2, dK2, bode_opt);
set(findobj('type','line'),'LineWidth',2);

3 STM32 C-program of Kalman filtering

main.c

#include "stm32f4xx.h"
#include <stdio.h>
#include <math.h>
//#define TURBO 1
#define INTR 1
//#define TEST 1

#define CONT 0

#define __FPU_PRESENT 1
#define __FPU_USED 1

#define BAUDRATE 115200
#define BS 1000
float reference[BS];
float measure[BS];
float estimate[BS];
uint16_t bi = 0;

GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
USART_InitTypeDef USART_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
ADC_CommonInitTypeDef ADC_CommonInitStructure;
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void Delay(__IO uint32_t nCount);
void USART_Config(void);
void GPIO_config(void);
void transmitUART(void);
void InitAdc(void);
void SPI_Config(void);
void ADC_Config(void);
void EXTI_Config(void);
void TIM3_Config(void);
uint16_t SPI_send(uint16_t data);
void USART_puts(USART_TypeDef* USARTx, volatile char *s);
void USART_cc(uint16_t cc);

__IO uint16_t CCR1_Val = 1000; //max 65535 counts. Lower count higher
freq

// 1000 ... 3kHz toggling freq
uint16_t PrescalerValue = 0;

uint16_t cc=13, cu=13; //adc readouts
uint16_t flag_usart=0;
int i;
char buffer[64];

// ------- generated by ss2C() in Matlab at_10:53 on_05-Aug-2014
// discrete time plant with sampling time_1e-05s (fs=100000Hz)
const float a11=-0.797918, a12=-135827, a13=-9.14032e+09, a14=-4.20646e

+14, a15=-8.16826e+18, a16=-4.42156e+22,
a21=6.91459e-07, a22=-0.736756, a23=-88793.1, a24=-7.21547e+09, a25

=-2.07282e+14, a26=-1.2937e+18,
a31=2.02313e-11, a32=2.48099e-06, a33=0.639392, a34=-32474.4, a35

=-9.72682e+08, a36=-6.13999e+12,
a41=9.60193e-17, a42=2.87245e-11, a43=9.0123e-06, a44=0.906685, a45

=-2845.61, a46=-1.80477e+07,
a51=2.82236e-22, a52=1.20984e-16, a53=4.79225e-11, a54=9.79798e-06, a55

=0.993775, a56=-39.5884,
a61=6.19096e-28, a62=3.36997e-22, a63=1.63096e-16, a64=4.96459e-11, a65

=9.98901e-06, a66=0.99993;
const float b11=6.91459e-07,
b21=2.02313e-11,
b31=9.60193e-17,
b41=2.82236e-22,
b51=6.19096e-28,
b61=1.09471e-33;
const float c11=0, c12=1.0821e+06, c13=1.94506e+11, c14=9.32798e+16, c15

=4.18467e+21, c16=-3.02862e+27;
const float k11=1.2847e-08,
k21=-1.99394e-13,
k31=-2.71934e-18,
k41=4.8536e-23,
k51=6.46724e-28,
k61=-3.56276e-32; //Kalman gain

float x1=0,x2=0,x3=0,x4=0,x5=0,x6=0,inov,est, y, u;
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//------------------------------------------------------------
int main(void) {
//------------------------------------------------------------

GPIO_config();
USART_Config();
InitAdc();
SPI_Config();
Delay(0xFFFF);

#ifdef TURBO //Turbo mode! continous conversion
//GPIO_SetBits(GPIOD, GPIO_Pin_10); //set TURBO mode (no stop btw

. conv)
GPIO_SetBits(GPIOD, GPIO_Pin_15); //blue for AQU
while(1){ //should run at 100kHz (ss)

//sample y (16 bit)
GPIO_ResetBits(GPIOD, GPIO_Pin_9); //initiates conversion
GPIO_SetBits(GPIOD, GPIO_Pin_9);
GPIO_ResetBits(GPIOD, GPIO_Pin_9);
cc = SPI_send(0xFFFF); //measurement 0..2^15
GPIO_SetBits(GPIOD, GPIO_Pin_9);

//sample u
ADC_SoftwareStartConv(ADC1); // Start the conversion
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC));//Processing

the conversion
cu = ADC_GetConversionValue(ADC1); //measurement 0..4095

//scale
y = (float)(cc) / 32768;
u = (float)(cu) / 4096;

if (bi<BS){
measure[bi] = y; //measurement
reference[bi] = u; //reference
bi++;

}
else{ //ready

#if (CONT == 1)
bi=0;

#else //ready
GPIO_ResetBits(GPIOD, GPIO_Pin_15); //blue off for AQU

end
transmitUART();
while(1){

GPIO_ToggleBits(GPIOD, GPIO_Pin_12); //blink green
Delay(0x8FFFFF);

}
#endif

}
}

#endif
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#ifdef INTR //
---------------------------------------------------------------------------

// normal operation: either PD9 in TIM_IRQn initiates conversion and
transfer

// or external CNV triggers. Enable EXTI
EXTI_Config();
//TIM3_Config();
while(1) {

if (flag_usart){
flag_usart=0;
if (bi<BS){

measure[bi] = y; //measurement
estimate[bi] = est; //estimation
reference[bi] = u; //reference
bi++;

}
else{

#if (CONT == 1)
bi=0;

#else //read
EXTI_DeInit();
transmitUART();
while(1){

GPIO_ToggleBits(GPIOD, GPIO_Pin_12); //blink
green

Delay(0x8FFFFF);
}

#endif
}
GPIO_ResetBits(GPIOD, GPIO_Pin_13);

}
}
#endif
#ifdef TEST //

---------------------------------------------------------------------------

GPIO_SetBits(GPIOD, GPIO_Pin_15);
while(1){

GPIO_ResetBits(GPIOD, GPIO_Pin_9); //initiates conversion
GPIO_SetBits(GPIOD, GPIO_Pin_9);
GPIO_ResetBits(GPIOD, GPIO_Pin_9);
cc = SPI_send(0xFFFF); //measurement
GPIO_SetBits(GPIOD, GPIO_Pin_9);

}

#endif
}

//------------------------------------------------------------
void transmitUART(void){
//------------------------------------------------------------

GPIO_SetBits(GPIOD, GPIO_Pin_14); //red on for transmission
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printf("mmmmmmeasurement");
for(bi=0; bi<BS; bi++){

sprintf(buffer,"%-1.20f,",measure[bi]);
for (i=0;buffer[i]!='\0';i++){

USART_SendData(USART3, buffer[i]);
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) ==

RESET);
}

}
printf("estimation");
for(bi=0; bi<BS; bi++){

sprintf(buffer,"%-1.20f,",estimate[bi]);
for (i=0;buffer[i]!='\0';i++){

USART_SendData(USART3, buffer[i]);
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) ==

RESET);
}

}
printf("reference");
for(bi=0; bi<BS; bi++){

sprintf(buffer,"%-1.20f,",reference[bi]);
for (i=0;buffer[i]!='\0';i++){

USART_SendData(USART3, buffer[i]);
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) ==

RESET);
}

}
printf("\n\r\n\r"); //Terminator
GPIO_ResetBits(GPIOD, GPIO_Pin_14); //red off

}
//------------------------------------------------------------
void InitAdc(){ //init 12 bit ADC
//------------------------------------------------------------

ADC_InitTypeDef ADC_InitStructure;
//ADC_CommonInitTypeDef ADC_CommonInitStructure;
GPIO_InitTypeDef gpioInit;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1ENR_GPIOAEN,ENABLE);

//RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA , ENABLE);
/* Configure PA1 as analog input */
gpioInit.GPIO_Pin = GPIO_Pin_1;
gpioInit.GPIO_Mode = GPIO_Mode_AN;
gpioInit.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOA, &gpioInit);

ADC_DeInit();
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;//data converted

will be shifted to right
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;//Input voltage is

converted into a 12bit number giving a maximum value of 4096
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //the conversion is

continuous, the input data is converted more than once
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;

118



3 STM32 C-program of Kalman filtering

// conversion is synchronous with TIM1 and CC1
ADC_InitStructure.ADC_ExternalTrigConvEdge =

ADC_ExternalTrigConvEdge_None;//no trigger for conversion
ADC_InitStructure.ADC_NbrOfConversion = 1;//I think this one is clear :p
ADC_InitStructure.ADC_ScanConvMode = DISABLE;//The scan is configured in

one channel
ADC_Init(ADC1,&ADC_InitStructure);//Initialize ADC with the previous

configuration
//Enable ADC conversion
ADC_Cmd(ADC1,ENABLE);
//Select the channel to be read from
ADC_RegularChannelConfig(ADC1,ADC_Channel_1,1,ADC_SampleTime_3Cycles);

//15

// Delay(0x3FF);
// ADC_ResetCalibration(ADC1);
// while(ADC_GetResetCalibrationStatus(ADC1));
// ADC_StartCalibration(ADC1);
// while(ADC_GetCalibrationStatus(ADC1));
// ADC_SoftwareStartConv(ADC1);
}

//------------------------------------------------------------
void SPI_Config(void){
//------------------------------------------------------------

GPIO_InitTypeDef GPIO_InitStructure;

/* Enable the SPI periph */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOE,

ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); //Use SPI 1
GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1); // SCK
GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1); // MISO
GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1); // MOSI

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
//SPI SCK, MISO, MOSI
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
GPIO_Init(GPIOA, &GPIO_InitStructure);

//config SPI
SPI_I2S_DeInit(SPI1);
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft | SPI_NSSInternalSoft_Set;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; //

2..256 //84MHz will be divided by prescaler
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
//SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
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SPI_Init(SPI1, &SPI_InitStructure);

NVIC_InitStructure.NVIC_IRQChannel = SPI1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

//SPI_I2S_ITConfig(SPI1, SPI_I2S_IT_RXNE, ENABLE);
SPI_Cmd(SPI1, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_Init(GPIOE, &GPIO_InitStructure);
GPIO_SetBits(GPIOE, GPIO_Pin_3); //chip select pin for LIS

}

//------------------------------------------------------------
void EXTI_Config(void){
//------------------------------------------------------------

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //B0 .. input CNV
interrupt

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOB, &GPIO_InitStructure);

SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource0) ;
EXTI_InitStructure.EXTI_Line = EXTI_Line0;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;

EXTI_Init(&
EXTI_InitStructure);

// Enable and set EXTI Line0 Interrupt to the lowest priority
NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0F;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0F;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

}

//------------------------------------------------------------
uint16_t SPI_send(uint16_t data){
//------------------------------------------------------------

SPI1->DR = data; // write data to be transmitted to the SPI data
register

120



3 STM32 C-program of Kalman filtering

while( !(SPI1->SR & SPI_I2S_FLAG_TXE) ); // wait until transmit
complete

while( !(SPI1->SR & SPI_I2S_FLAG_RXNE) ); // wait until receive
complete

while( SPI1->SR & SPI_I2S_FLAG_BSY ); // wait until SPI is not busy
anymore

return SPI1->DR; // return received data from SPI data register
}

//------------------------------------------------------------
void GPIO_config(void){
//------------------------------------------------------------

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_12
| GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;

// Pin 12-green, 13-orange, 14-red, 15-blue
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOD, &GPIO_InitStructure);

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //pushbutton
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_Init(GPIOA, &GPIO_InitStructure);

}

//------------------------------------------------------------
void TIM3_Config(void){
//------------------------------------------------------------

NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // TIM3 clock

enable

NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; // Enable the TIM3
gloabal Interrupt

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

/* Compute the prescaler value */
PrescalerValue = (uint16_t) ((SystemCoreClock / 2) / 6000000) - 1;

/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 65535;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
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// Prescaler configuration
TIM_PrescalerConfig(TIM3, PrescalerValue, TIM_PSCReloadMode_Immediate

);

/* Output Compare Timing Mode configuration: Channel1 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Disable);
TIM_ITConfig(TIM3, TIM_IT_CC1, ENABLE); // TIM Interrupts enable
TIM_Cmd(TIM3, ENABLE); // TIM3 enable counter

}

//------------------------------------------------------------
void Delay(__IO uint32_t nCount){
//------------------------------------------------------------

while(nCount--)
;

}

//------------------------------------------------------------
void USART_Config(){
//------------------------------------------------------------

RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
// enable the peripheral clock for the pins PC10 for TX and PC11 for

RX
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; // the pins are

configured as alternate function so the USART peripheral has
access to them

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // this defines the
IO speed and has nothing to do with the baudrate!

GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; // this defines the
output type as push pull mode (as opposed to open drain)

GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; // this activates the
pullup resistors on the IO pins

GPIO_Init(GPIOC, &GPIO_InitStructure);

/* The RX and TX pins are now connected to their AF

* so that the USART1 can take over control of the pins */

GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_USART3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_USART3);

/* Now the USART_InitStruct is used to define the

* properties of USART1 */
USART_DeInit(USART3);
USART_InitStructure.USART_BaudRate = BAUDRATE*3.072;

// BUG !!!
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USART_InitStructure.USART_WordLength = USART_WordLength_8b;// we want
the data frame size to be 8 bits (standard)

USART_InitStructure.USART_StopBits = USART_StopBits_1; // we
want 1 stop bit (standard)

USART_InitStructure.USART_Parity = USART_Parity_No; // we don't
want a parity bit (standard)

USART_InitStructure.USART_HardwareFlowControl =
USART_HardwareFlowControl_None; // we don't want flow control (
standard)

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; // we
want to enable the transmitter

USART_Init(USART3, &USART_InitStructure);

USART_Cmd(USART3, ENABLE);
USART_SendData(USART3, '0'); //dummy byte at first

}

//------------------------------------------------------------
void USART_cc(uint16_t cc) {
//------------------------------------------------------------

USART_SendData(USART3, (cc&0xFF00) >> 8); //upper byte
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET);
USART_SendData(USART3, cc&0x00FF); //lower byte
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET);
USART_SendData(USART3, ','); //delimiter 0x2C
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET);

}

//------------------------------------------------------------
int fputc(int ch, FILE *f) {
//------------------------------------------------------------

// Retargets the C library printf function to the USART.
USART_SendData(USART3, (uint8_t) ch);

// Loop until the end of transmission
while (USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET);
return ch;

}

//------------------------------------------------------------
void USART_puts(USART_TypeDef* USARTx, volatile char *s){
//------------------------------------------------------------

while(*s){
// wait until data register is empty
while( !(USARTx->SR & 0x00000040) );
USART_SendData(USARTx, *s);

*s++;
}

}
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stm32f4xx_it.c

#include "stm32f4xx_it.h"
#include <stdio.h>

extern uint16_t cc, cu;
extern uint16_t flag_usart;
extern const float a11, a12, a13, a14, a15, a16, a21, a22, a23, a24, a25,

a26, a31, a32, a33, a34, a35, a36, a41, a42, a43, a44, a45, a46, a51,
a52, a53, a54, a55, a56, a61, a62, a63, a64, a65, a66;

extern const float b11, b21, b31, b41, b51, b61;
extern const float c11, c12, c13, c14, c15, c16;
extern const float k11, k21, k31, k41, k51, k61;
extern float x1,x2,x3,x4,x5,x6,inov,est,y,u;

uint16_t SPI_send(uint16_t data);

...

//------------------------------------------------------------
void EXTI0_IRQHandler(void){
//------------------------------------------------------------
float x1n,x2n,x3n,x4n,x5n,x6n;

//Check if EXTI_Line0 is asserted
if(EXTI_GetITStatus(EXTI_Line0) != RESET) {

if (flag_usart){ //if flag could not be resetted (too
high sampling)
GPIO_SetBits(GPIOD, GPIO_Pin_14); //red fault

}
GPIO_SetBits(GPIOD, GPIO_Pin_13); //orange
//sample y (16 bit)
cc = SPI_send(0xFFFF); //measurement

0..32000

//sample u
ADC_SoftwareStartConv(ADC1); // Start the conversion
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC));//Processing

the conversion
cu = ADC_GetConversionValue(ADC1); //measurement 0..4096

//scale
y = (float)(cc) / 65535;
u = (float)(cu) / 4095;

// ------- generated by ssequation2C() in Matlab at_11:05 on_05-Aug-2014
//Kalman prediction x=A*x+B*u;
x1n=a11*x1+a12*x2+a13*x3+a14*x4+a15*x5+a16*x6+ b11*u;
x2n=a21*x1+a22*x2+a23*x3+a24*x4+a25*x5+a26*x6+ b21*u;
x3n=a31*x1+a32*x2+a33*x3+a34*x4+a35*x5+a36*x6+ b31*u;
x4n=a41*x1+a42*x2+a43*x3+a44*x4+a45*x5+a46*x6+ b41*u;
x5n=a51*x1+a52*x2+a53*x3+a54*x4+a55*x5+a56*x6+ b51*u;
x6n=a61*x1+a62*x2+a63*x3+a64*x4+a65*x5+a66*x6+ b61*u;
x1=x1n;x2=x2n;x3=x3n;x4=x4n;x5=x5n;x6=x6n;
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3 STM32 C-program of Kalman filtering

//Kalman measurement update x=x+K*(y-C*x);
inov=y-(c11*x1+c12*x2+c13*x3+c14*x4+c15*x5+c16*x6);
x1=x1+k11*inov;
x2=x2+k21*inov;
x3=x3+k31*inov;
x4=x4+k41*inov;
x5=x5+k51*inov;
x6=x6+k61*inov;

//output estimation y=C*x;
est=c11*x1+c12*x2+c13*x3+c14*x4+c15*x5+c16*x6;

flag_usart = 1;
GPIO_ResetBits(GPIOD, GPIO_Pin_13);

}
EXTI_ClearITPendingBit(EXTI_Line0);

}

//
void SPI1_IRQHandler(void){
// while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
// SPI_I2S_SendData(SPI1, 0x00);
// while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY) != RESET){}

}

//------------------------------------------------------------
void TIM3_IRQHandler(void){
//------------------------------------------------------------

TIM_ClearITPendingBit(TIM3, TIM_IT_CC1);
GPIO_ToggleBits(GPIOD, GPIO_Pin_15); //LED

GPIO_SetBits(GPIOD, GPIO_Pin_9); //initiates conversion
GPIO_ResetBits(GPIOD, GPIO_Pin_9);

capture = TIM_GetCapture1(TIM3);
TIM_SetCompare1(TIM3, capture + CCR1_Val);

}
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4 Statistics

The relevant, most frequently used words and phrasis with the corresponding frequencies
are:

sensor/s 194+140
noise 165
transfer function 98
frequency/frequencies 85+27
actuator 85
measurement 76
voltage 69
bandwidth 68
displacement 60
Kalman filter 59
resolution 56

...
fusion 49

Most of the words begins with an s (331) followed by the initial c (303). The letter
frequency in Chapters 1-3 (in sum 135831 letters) is compared to that in English
(statistics taken from Concise Oxford Dictionary (11th edition revised, 2004)).
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