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Abstract

Through this paper I wish to to give an introduction about support vector re-
gression and also its various modes of usage.We will be seeing how this support
vector regression is formulated and how its varies alternatives are derived.

1 Introduction
Support Vector Regression is a method used in foreseeing various changes in trends
such as the rise and fall of stocks in stock market[1][2][3],time series prediction[4][5]
and so on.
Before moving into the core of the paper it is important to have a glance through few
of the important fundamentals .
Primal Variable[6]→An expression consisting of objective function and its constraints.The
optimization process is then required to minimize the expression with respect to its con-
straints.
Dual Variables[6]→ The primal variables are converted to dual variables through the
application of Lagrangian multipliers.So now the objective function is a dual optimiza-
tion problem were the goal is to maximize it.
Why is there a need for conversion from primal variables to dual variables while solving
these problems? This conversion is done because primal-dual is a method of solving
dual optimization problems.
For the means of providing input data for the problem a time series is chosen.Time
series can be considered as a sample of input and there corresponding target vectors as
+1 or −1 .They are depicted as XεRd,the input vector ,and Yε R ,the target vectors.So
time series can be represented as (X,Y ) = (Xt, Yt), XtεR

d, YtεR
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2 Support Vector Regression
After acquiring the desired set of samples, we need to derive a function for it,a line
equation is used here as we plot the samples as points and this equation connects them.

f =< w, x > +b (1)

2.1 The need of a flat function
The flatness of a function[7] is judged by how well we can fix a trade off between its
complexity and its training mistakes.The complexity of the function means how the
tube(the objective function) moves about to accommodate the training samples.So the
main goal in getting an objective function is to accommodate as much as samples while
the function is as flat as possible.
Now the width of the tube requires to be minimized to ensure good generalization and

flatness.This is done by minimizing
1

2
||w||2

This can be written as a convex optimization problem

min
1

2
||w||2 + CRε

emp (2)

subject to y− < w, x > −b ≤ ε (3)
< w, x > +b− y ≤ ε (4)

Here C is a constant determining the trade-off between complexity and flatness of the
function

Rε
(emp) =

1

l

l∑
i=1

|yi − f(xi)| (5)

This is the emperical loss function which is meant for better generalisation.

2.2 A Brief Introduction of Emperical Risk Minimisation
Now we have to choose the best possible function f(x) such that the loss L(y,f(x)) is
kept at a minimum[8][9]. This loss is the difference in the response of y,the target
vector,of respective x and the f(x) for that particular x. Consider the risk function

R(λ) =

∫
L(y, f(x))dP (x, y) (6)

So we have to find a function which minimizes the risk in the unknown distribution
P(x,y). A method of reducing this risk is by the application of Emperical Risk Minimi-
sation Principle. The principle is that we replace the Risk function (above) with with
the Emperical Risk.

Rε
(emp) =

1

l

l∑
i=1

|yi − f(xi)| (7)
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By principle over inputing enough samples for the function ,theRemp is expected
to converge to the minimum value of risk,so thereby reducing loss and increasing gen-
eralisation.

3 ε−Support Vector Regression(ε− SVR)
This is modified method of Support Vector Regression.The concept of ε− SVR is that
we characterize the function as a tube of width ’ε’[4][5] ,such that any error lying
within the area would be ignored.Now if an error lies beyond the width ε,it is given a
value of a new constant ε(∗),(∗) indicating that it can lie above or below the tube,for ε∗

being below the tube.So for these errors the flatness of the tube will be compromised
and they would be included in the path of the tube. So in general ,this method ensures
that for any error within ε,the tube doesn’t change or will continue in its existing path
and for errors outside ε,the tube will stray away from its existing path . Now the
function for the ε−SVR is formulated below

min
1

2
|w|2 + c

l∑
i=1

(ε∗ + ε) (8)

subject to y− < w, x > −b ≤ ε+ ε (9)
< w, x > +b− y ≤ ε+ ε∗ (10)
ε∗, ε ≥ 0 (11)

We now form the Lagrangian expression of the objective function in order to find the
dual optimization problem we need to maximize

L =

1

2
+ c

l∑
i=1

(ε∗ + ε) +

l∑
i=1

(ηiε+ η∗i ε
∗)−

l∑
i=1

αi(ε+ εi − y+ < w, x > +b)−

l∑
i=1

α∗i(ε+ ε∗ + y− < w, x > −b) (12)

Here η(∗)i and α(∗)i are Lagrangian multipliers and holds the condition

α
(∗)
i ≥ 0 (13)

η
(∗)
i ≥ 0 (14)
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For optimal condition the derivatives of the primal variables are found

dL

db
=

l∑
i=1

(α∗
i − αi) = 0 (15)

dL

dw
= w −

l∑
i=1

(αi − α∗
i ) = 0 (16)

dL

dε
(∗)
i

= c− α(∗)
i − η

(∗)
i = 0 (17)

Now after substituting it in Lagrange function we obtain the dual optimization problem

maximize −1

2

l∑
i=1

(αj − α∗
j (< xj , xi >)

−ε
l∑

i=1

(αi + α∗
i ) +

l∑
i=1

y(αi − α∗
i ) (18)

subject to
l∑

i=1

(α∗
i − αi) = 0 (19)

α∗
i , αiε[0, C] (20)

as we have eliminated η(∗),so we get 19

Now

w =

l∑
i=1

(αi − α∗
i )xi (21)

Now after substituting no in no

f(x) =

l∑
i=1

((αi − α∗
i ) < xi, x > +b (22)

This is called support vector expansion.Here w is represented in terms of xi,so it is
independent of the input vector space and dependent only on the sample space.Hence
the complexity

3.1 To compute b
The method of finding a value of b involves using Kaush-Kaun-tucker[10] condi-
tions.The KKT conditions state that at the point of solution the product of dual variables
and constraints have to be equal to 0.

αi(ε+ εi − yi+ < w, xi > +b) = 0 (23)
α∗
i (ε+ ε∗i + yi− < w, xi > −b) = 0 (24)

(C − αi)ε = 0 (25)
(α∗

i ε
∗
i ) = 0 (26)
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The observations we can make from this is

1)For samples with α∗
i = C only are outside the ε insensitive tube , as ,if α∗

i = C
,then no =0,while ε∗i exists.

2)There doesnt exist a situation where αiandα
∗
i are at the same time non-zero.

So to compute b we can use these observations
1) if αiε(0, C) then εi = 0 and α∗

i = 0
2) if α∗

i ε(0, C) then ε∗i = 0 and αi = 0

b = yi− < w, xi > −ε (27)
for αiε(0, C)

b = yi− < w, xi > +ε (28)
for α∗

i ε(0, C)

Another observation that can be made here is that for |f(x) − yi| ≥ ε,the Lagrangian
multipliers are non-zero ,or in other words all the samples within the ε-insensitive tube
have αi, α

∗
i as0. Support vectors can be used for non-linear function by moving the

input sample to a feature space H and then applying SVR to these new samples.

w =

l∑
i=1

(αi − α∗
i )φ(xi) (29)

f(x) =

l∑
i=1

(αi − α∗
i )k(x, xi) + b (30)

Now here the optimization problem finds the flatest function in feature space where

k(x, xi) = φ(x).φ(xi)

4 ν− Support Vector Regression
In this approach ε itself is a variable and in primal form it is multiplied with another
variable ν ε(0,1)[11][12][13].So through ν we can adjust the width of the tube and
increase it’s accuracy
So the primal objective function is given by

minimize
1

2
wTw + C(vε+

1

l

l∑
i=1

(εi + ε∗i )) (31)

subject to (wTφ(xi) + b)− yi ≤ ε+ εi

yi − (wTφ(xi) + b) ≤ ε+ ε∗i (32)
εi, ε

∗
i ≥ 0 (33)

ε > 0 (34)
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Now we use the Lagrangian multipliers to get the dual optimization problem.So we get
the Wolfe dual expression for v>0 and C>0

maximize
l∑

i=1

(α∗
i − αi)yi −

1

2

l∑
i=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj) (35)

subject to
l∑

i=1

(αi − α∗
i ) = 0 (36)

0 ≤ α(∗)i ≤
C

l
(37)

l∑
i=1

(α∗
i + αi) ≤ C.v (38)

An important expression we can get here is of w in terms of α and φ(xi

w =

l∑
i=1

(α∗
i − αi)φ(xi) (39)

So we get the regression estimate

f(x) =

l∑
i=1

(α∗
i − αi)k(xi, x) + b (40)

The values of b andε can be got through KKT expansions where ε(∗)i = 0 and α∗
i ε(0,

C

l
Certain observations to be noted here is
1)If v≥1 then ε = 0,as it dosent pay to increase ε
2)If v≤ then ε = 0 is possible as the data can be noise free and can be perfectly
interpolated by noise free model.

5 Conclusion
The idea behind this paper was to give an basic view about support vector regression,ε−Support
Vector Regression and ν− Support Vector Regression.The idea behind how these ex-
pressions came into being was explained clearly in this paper.For the purpose of imple-
menting these models, using LIBSVM through MATLAB is recommended.
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