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1 Intro

1. Intro
Segmentation is used to locate boundaries of an object in a given image. Finding those
boundaries is important e.g. for visualizing three dimensional objects and measuring
the surface or the volume of an object. Ideally, the boundaries coincide with the edges
seen in the image. However, due to noise, partly missing information or in case of
subjective contours the edges can be irregular and discontinuous. The human brain is
able to perform visual completion that is to say it can in many cases complete those
interrupted boundaries by filling in the missing gaps. Simple segmentation methods
however fail to do so ([MS07], [SMS00]). Based on the level set method [Set99] an
intrinsic model of deformable surfaces was proposed by Vicent Caselles et al. [CCCD93]
and by Ravi Malladi et al. [MSV95] where the surface propagates by an implicit velocity
depending on the image gradient and therewith stops at the boundary. This allowed
the detection of interior and exterior contours of objects with boundaries given by
gradients. Further research then lead to the subjective surface method that is presented
in [SMS00] and that allows for the detection of missing boundaries in 2D. It sharpens
the surface around the edges and connects segmented boundaries across the gaps. All
those methods use finite differences to solve the resulting initial value partial differential
equation. As opposed to this Michael Fried is using finite elements with the subjective
surface method resulting in an algorithm that detects interrupted boundaries as well
as subjective contours in 2D [FM09]. His algorithm is based on Karol Mikula’s idea of
using the subjective surface method for medical image segmentation [MS07].

As an extension of Michael Fried’s work, the algorithm presented in this thesis should
be able to complete missing boundary segments in 3D, smooth out the contours and
be able to perform modal completion.

The remainder of this paper is divided into three sections: at first we give the nec-
essary mathematical background comprising the level set method and finite element
method, see I. In Part II, we present the implementation of the problem with the finite
element toolbox ALBERTA. Finally, in Part III we present the experimental results
for the segmentation of synthetic and real 3D images, elaborating on noisy images and
modal completion. The paper ends with a short concluding section.
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2 Level Set Method

Part I.
Mathematics
The program extended in the scope of this works implements the subjective surface
method solved with finite elements. The subjective surface method for 3D image seg-
mentation presented in [MS07] is related to geodesic mean curvature flow of level sets.
In the following, first the level set method and its extension to the subjective surface
method are described. Then the discretization of the model and the solution via finite
elements are presented.

2. Level Set Method
A simple approach for image segmentation is to take a segmentation function and let it
evolve over time so it assumes the shape of the segmented object. We start with a small
initial curve or surface, e.g. a sphere, and let it grow until it locks on the boundary of
the object we want to segment. This way we can isolate an object from its background.

The level set method devised in 1987 by Stanley Osher and James A. Sethian de-
scribes the moving curves or surfaces [OF01], [Set99]. The method computes and tracks
the motion of an evolving curve or interface Γ in two or three dimensions, see Figure
1. The interface Γ separates two regions from each other and moves with the scalar
speed v in normal direction n. The evolution over time of any point x on such a level
set curve therefor is characterized by x′(t) = vn.

Γ

v

Ω−

Ω+

Figure 1: Level set curve with normals

The speed function v can depend on local geometric information such as curvature
and normal direction, shape and position of the front, time and other shape independent
properties like external physics. Is v > 0, the interface moves forward that is in normal
direction and for v < 0 it moves backward, in opposite normal direction. The initial
position of the front is the zero level set of the smooth level set function u. This
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2 Level Set Method

function’s evolution can be linked with the propagation of the interface itself. The zero
level set of u has to match the propagating front at any time. This implies

u(x(t), t) = 0.

To derive an equation of the motion we use the chain rule

ut − ∇u(x(t), t) · x′(t) = 0,

with x′(t) = vn, where n = ∇u
|∇u| this results in the following evolution equation

ut − v|∇u| = 0. (1)

In sum, we want to solve

ut − v|∇u| = 0
Γ(t) = {(x, y, z)|u(x, y, z, t) = 0}

in an image domain Ω ∈ R
3 with zero Neumann boundary condition at its boundary

surface ∂Ω.

2.1. Speed function

We choose the speed function

v = κ = ∇ · ∇u

|∇u| ,

where κ is the mean curvature of the surface. This means in regions of high curvature
the front will move fast, whilst in regions of small curvature the interface moves slow
or stops. [Set99]

2.2. Edge detector

Gage and Grayson showed that a simple closed curve moving under its curvature is
shrinking to a point and in three dimensions a hyper-surface moving under its mean
curvature analogously shrinks to one or more spheres until it disappears [Set99]. As we
do not want the curves to vanish, but halt at the object boundaries we need our speed
function to be zero at the boundaries. For this purpose we will multiply the speed
function by an edge function. The edge function detects the boundaries by taking the
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2 Level Set Method

gradient of the intensity function I0 and in that way determines when the surface
evolution needs to stop. We use the edge detector

g = 1
1 + |∇I0| ,

where I0 denotes the original image [Set99]. It is strictly positive in homogeneous
regions and close to zero on the edges. The curve is attracted by these detected edges
and a steady state of it is taken as the boundary of the segmented object. However, if
the contours are interrupted the algorithm fails as the curve only stops at ideal edges
where g = 0.

Therefor, Caselles and Kimmel introduced a new gradient term

∇g = ∇
(

1
1 + |∇I0|

)

in [CKS97] that increases the attraction of the curve or surface towards the boundary
and allows to track boundaries with a high variation in their gradient and small gaps.

2.3. Regularization

In noisy images, problems still occur because the advection is insufficient and the noise
components may act like edges, attracting the evolving curve or surface. This can be
avoided by adding a regularization term. Thus, in order to work with noisy images,
we add a curvature dependence acting as a regularization to the normal velocity v to
achieve sufficient advection and to smooth out noise and inhomogeneities. We are using
the regularization term gκ. The geometrical equation for v after multiplying the speed
function with the edge detector and adding the regularization term is given by

vreg = gκ + ∇g · n.

Plugging the regularized normal velocity vreg into (1) results in the level set formu-
lation of the surface evolution [Fri03], [MS07]:

ut − g|∇u|∇ · ∇u

|∇u| + ∇g · ∇u = ut − |∇u|∇ ·
(

g
∇u

|∇u|
)

= 0. (2)

This equation describes an active contour model with which one can detect objects
with interior holes. It allows for cusps, corners and automatic topological changes.
Using this approach on the zero level set, the initial surface has to be close to the
final shape to give reasonable results, otherwise the surface might not be driven there.
As a consequence we do not only consider the evolution of the zero level set, but the
whole hyper surface u that is composed by all level sets, leading to the subjective
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2 Level Set Method

surface method [SMS00], [SMS02]. With the evolution over time all level sets will move
towards the boundaries and build up there.

In this section we show how to approximate equation 2 with finite elements. The
finite element method uses a simple approximation of unknown variables to transform
partial differential equations into algebraic equations.

2.4. Finite element space

Let Th be a conforming simplicial triangulation of Ω ∈ R
n and P1(S) the space of linear

polynomials on the simplex S, then we define the finite element space Xh by

Xh := {ϕ ∈ C0(Ω̄)|ϕ ∈ P1(S)∀S ∈ Th}. (3)

We use the barycentric coordinates

λ(x) = (λ0, . . . , λd)(x) ∈ R
d+1

to describe finite elements on the simplicial grid. The barycentric coordinates of x ∈ R
d

can be obtained by solving the SLE

d∑
j=0

λjaj = x,
d∑

j=0
λj = 1.

The reference simplex is defined by

S̄ := {(λ0, . . . , λd) ∈ R
d+1|λk ≥ 0,

d∑
k=0

λk = 1},

which equals the standard simplex Ŝ, if a0 = 0, aj = ej, j = 1, . . . , d.
Each simplex S ⊂ Th can be mapped to the standard simplex Ŝ by the parameteri-

zation
FS : Ŝ → S, FS(x̂) = ASx̂ + a0, (4)

where the matrix AS ∈ R
n×d is given by

AS =

⎛
⎜⎜⎜⎜⎝

... ...
a1 − a0 . . . ad − a0

... ...

⎞
⎟⎟⎟⎟⎠ .

Now the non vanishing global basis functions are locally numbered on the simplex
S. The local basis functions {ϕ̄1, . . . , ϕ̄m} are coupled with the global basis functions
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2 Level Set Method

{ψ1, . . . , ψN}, where N = dimXh. For every basis function ψj that does not vanish on
S ∈ Th holds

ψj|S(x(λ)) = ϕ̄i(λ),

where i ∈ {1, . . . , m} depends on j and S. m equals the number of local basis functions
on an element. Following the notation given in the ALBERTA documentation [SS05],
we now denote iS : JS → {1, . . . , m} to be the mapping of the global index set JS

to the index set of the local basis functions on S. With jS : {1, . . . , m} → JS being
the inverse mapping of iS, the connection between local and global numbering on each
element S is determined by

ψj(x(λ)) = ϕ̄is(j)(λ) ∀λ ∈ S̄, j ∈ JS

ψjS(i)(x(λ)) = ϕ̄i(λ) ∀λ ∈ S̄, i ∈ {1, . . . , m}.

There is a local coefficient vector (u1
S, . . . , um

S ) = (ujS(1), . . . , ujS(m)) of uh on S next
to the global coefficient vector (u1, . . . , uN).

The local representation of uh on the simplex S can thus be written as

uh(x) =
m∑

i=1
ui

Sϕ̄i(x) ∀x ∈ S

or as the finite element functions are usually not evaluated at world coordinates x but
at barycentric coordinates λ on S:

uh(x(λ)) =
m∑

i=1
ui

Sϕ̄i(λ(x)) ∀x ∈ S̄. (5)

2.5. Discretization

2.5.1. Regularization

Before starting the discretization we slightly change the diffusion term in the segmenta-
tion model. To avoid problems with a vanishing gradient ∇u, we use the Evans-Spruck
regularization [ES+91] substituting |∇u| by

√
ε2 + |∇u|2, with ε ∈ (0, 1) being a

positive regularization parameter:

ut −
√

ε2 + |∇u|2∇ ·
⎛
⎝g

∇u√
ε2 + |∇u|2

⎞
⎠ = 0. (6)

This regularization ansatz has been successfully used for finite element algorithms
dealing with level set formulations of mean curvature flow related problems, c.f.[DD01],
[DD03],[Fri04]. The parameter ε determines whether mean curvature flow of level sets
(ε = 0) or mean curvature flow of the graphs (ε = 1) is performed. For segmentation
of objects with irregular and interrupted boundaries ε should be chosen to be very
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2 Level Set Method

close to zero. Large variations in the graph of the segmentation function, that is noise
components in the input image, are smoothed due to large mean curvature [MS07].

2.5.2. Weak formulation

We now reformulate the problem (6) into the weak form which is a variational statement
of the problem. We multiply with a test function ϕ ∈ H1(Ω), integrate over the the
domain Ω and then use integration by parts using zero Neumann boundary conditions.
This relaxes the problem. Instead of finding a pointwise solution, we find a solution
that satisfies the strong form on an average over the domain.

∫
Ω

ut√
ε2 + |∇u|2

ϕ +
∫
Ω

g
∇u√

ε2 + |∇u|2
· ∇ϕ = 0. (7)

2.5.3. Spatial discretization

Based on the weak formulation we want to solve the problem locally on elements. Using
the finite element space (3), the spatial discretization of the weak identity (7) is given
by ∫

Ω

ut,h√
ε2 + |∇uh|2

ϕh +
∫
Ω

g
∇uh√

ε2 + |∇uh|2
· ∇ϕh = 0.

Note that in our case uh = uh(t, x) is not only location-dependent but also time-
dependent. In the finite element discretization the time dependence can be found in
the coefficients:

uh(t, x(λ)) =
m∑

i=1
ui

S(t)ϕ̄i(λ(x)) ∀x ∈ S̄.

2.5.4. Time discretization

The backward Euler scheme is used for time discretization. The time step size is denoted
by τ = T

M
. With m = 0, 1, . . . , M time steps, Ψm = Ψ(tm) defines any function

Ψ : Ω × [0, T ] → R at the time tm = mτ . Taking the nonlinear terms of the equation
from the previous time step and considering the linear terms on the current time level,
we get a semi-implicit time discretization [MS07] of the weak identity(7)

1
τ

∫
Ω

um
h − um−1

h√
ε2 + |∇um−1

h |2
ϕh +

∫
Ω

g
∇um

h√
ε2 + |∇um−1

h |2
· ∇ϕh = 0

for m = 1, 2, ..., M , where u0
h is a suitable finite element approximation to the given

initial value uh(0). For better readability, the subscript h is dropped from now on
writing um and ϕ instead of um

h and ϕh.
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2 Level Set Method

We now split the first order term and bring um−1 from the old time step to the right
hand side:

1
τ

∫
Ω

um√
ε2 + |∇um−1|2

ϕ +
∫
Ω

g
∇um√

ε2 + |∇um−1|2
· ∇ϕ = 1

τ

∫
Ω

um−1√
ε2 + |∇um−1|2

ϕ. (8)

Using local representation and the abbreviations

c = 1√
ε2 + |∇um−1|2

, A = g√
ε2 + |∇um−1|2

we can rewrite (8) as the LSE

1
τ

N∑
j=1

um
j

∫
S

cϕjϕi +
N∑

j=1
um

j

∫
S

∇ϕjA · ∇ϕi = 1
τ

N∑
j=1

um−1
j

∫
S

cϕjϕi,

where i depends on S and j.
By applying the index mapping iS : JS → {1, . . . , m} and transformation (4) to the

standard simplex we can rewrite the equation again to

1
τ

N∑
j=1

um
j

∫
Ŝ

c̄ϕ̄i(λ(x̂))ϕ̄j(λ(x̂)) +
N∑

j=1
um

j

∫
Ŝ

∇λϕ̄j(λ(x̂)) · Āλ(x̂))∇λϕ̄i(λ(x̂) =

1
τ

N∑
j=1

um−1
j

∫
Ŝ

c̄ϕ̄i(λ(x̂))ϕ̄j(λ(x̂)), (9)

using the abbreviations

c̄ = |detDFS|√
ε2 + |∇um−1|2

= |detDFS|c, (10)

where DFS is the Jacobian of FS, and

Ā = |detDFS|Λ(x̂(λ)) g√
ε2 + |∇um−1|2

ΛT (x̂(λ)) = |detDFS|Λ(x̂(λ))AΛT (x̂(λ)), (11)

where Λ = ΛS ∈ R
d×n is the Jacobian of the barycentric coordinates on S:

Λ(x) :=

⎛
⎜⎜⎜⎝

λ0,x1(x) λ0,x2(x) . . . λ0,xn(x)
... ... ...

λd,x1(x) λd,x2(x) . . . λd,xn(x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∇λ0(x)T

...
∇λd(x)T

⎞
⎟⎟⎟⎠ .
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2 Level Set Method

We calculate the integrals by quadrature. A numeric quadrature is a set of pairs of
weights and points with

∫
Ŝ

f(x̂)dx̂ = Q̂(f) :=
nQ−1∑
k=0

ωkf(x̂(λk)), (12)

where nQ is the number of quadrature points.Using the affine transformation described
in (4), we can get a quadrature for any simplex S by transforming (12):

∫
S

f(x)dx = QS(f) := Q̂((f ◦ FS)|detDFS|) =
nQ−1∑
k=0

ωkf(x(λk))|detDFS(x̂(λk))|.

Replacing the integrals in (9) by the quadrature terms

M = 1
τ

nQ−1∑
k=0

ωk

(
c̄ (λ (x̂)) ϕ̄i (λ (x̂)) ϕ̄j (λ (x̂))

)
,

C =
nQ−1∑
k=0

ωk

((
∇λϕ̄j (λ (x̂)) · Ā (λ (x̂)) ∇λϕ̄i (λ (x̂))

))

yields

[M + C]
N∑

j=1
um

j = M
N∑

j=1
um−1

j . (13)

M and C will from now on be called mass and stiffness operator respectively.
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3 Basic Concepts of ALBERTA

Part II.
Implementation
In this part the implementation of the time dependent problem and solution of the
discrete system (13) as well as the input and output methods are described.

Starting with the initialization of all parameters, structures and functions that are
needed for the further calculations, the finite element space is set up and the volume to
be segmented is read in. After initial mesh adaption the solution of the time dependent
problem starts. In every time step first the image I0 is interpolated on the mesh and
then the adaptive algorithm is run, adapting the mesh appropriately and solving the
discrete problem on it. At the end of every time step ητ which is the L2-norm of the
difference between the old and the current time step is calculated and the finite element
function is regularized.

Those steps are repeated until ητ comes below a given tolerance δ. Then the finite
element method is evaluated and results are put out.

The program structure is shown in Algorithm 1.

Algorithm 1 Program structure
1: Initialization of parameters, structures and functions → section 4
2: Adapt the initial mesh
3: while ητ > δ do
4: Set un−1 = un, interpolate I0 on Xh

5: Do one time step → algorithm 2
6: Calculate ητ = ||un−1 − un||2, regularize un

7: n = n + 1
8: end while
9: Write un−1 to output files → section 6

Adaptive
algorithm

→ section 5

Below the basic concepts of the toolbox we are using are presented followed by the
detailed description of the algorithm.

3. Basic Concepts of ALBERTA
The finite element algorithm is realized with the finite element toolbox ALBERTA. In
this part the toolbox is introduced and the main concepts are presented. ALBERTA
is an adaptive multilevel finite element toolbox developed in ANSI-C. The library
provides data structures and functions for adaptive finite element simulations in 1-D,
2-D and 3-D. ALBERTA can be used for fast and flexible implementation of efficient
software for real life applications and simulations. It is based on modern algorithms
like adaptive methods, higher order discretizations, fast linear and non-linear iterative
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3 Basic Concepts of ALBERTA

solvers and multi-level algorithms. Furthermore you can improve numerical methods
with ALBTERTA and directly integrate them in existing simulation software [SS05].

3.1. Mesh

The computational domain is triangulated into tetrahedra. A tetrahedra mesh as op-
posed to a rectangular one simplifies the adaptive mesh refinement that is going to be
used. It is easier to subdivide elements without causing hanging nodes. Furthermore
they are more versatile as they are body-fit to moving interfaces. We start with the
macro triangulation which equals the coarsest mesh. To build the simplicial grid it
can then either be refined at the beginning or it can be adapted dynamically with the
evolving solution. The adapted parts can be coarsened again, provided that the macro
triangulation represents the coarsest possible grid. ALBERTA uses the Kossaczký re-
finement algorithm which leads to nested meshes with a hierarchical structure of bi-
nary trees [SS05]: A refined element is refined into two children elements. Therefor
every element is the root of a binary tree where the leaf nodes represent the current
triangulation. If elements are marked to be coarsened, they are simply coarsened back
into their parent element.

3.2. Degrees of freedom

Each leaf element stores information about its local degrees of freedom (DOFs) that
connect finite element data with geometric information of the triangulation. A DOF is
realized as a simple integer index. Thus when refining the mesh and adding new DOFs
the index range has to be enlarged, too. During mesh coarsening DOFs are removed and
thereby holes in the list of used indexes might appear. All vectors or matrices storing
data on the DOFs have to be adjusted in their size as well. ALBERTA provides a DOF
administration tool that automatically re-sizes matrices and vectors accordingly and
ensures a continuous indexing by compressing the index range, that is renumbering the
DOFs.

3.3. Adaptive mesh refinement

The aim of the adaptive mesh refinement is that the used mesh is adapted to the
problem in order to fulfill a given criterion like an error tolerance tol which is compared
to the global error estimate which is given by the sum of the local error estimates:

||u − uh|| ≤ η(uh) =
⎛
⎝∑

S∈T

ηS(uh)p

⎞
⎠

1/p

, p ∈ [1, ∞).

This equation holds true if a efficient and reliable error estimator exists. In our case
we do not have an error estimator but an error indicator, so it is not guaranteed that
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3 Basic Concepts of ALBERTA

the refining really will decrease the global error. However this does not pose a problem
as our aim is not to find the perfect solution of the level set function uh, but to have
a high resolution in the vicinity of the boundaries.

The finer the mesh is, the higher the resolution will be. On the other hand a finer
mesh requires more memory space and causes a higher computational effort and thereby
higher computation times. Therefore the mesh should be as fine as necessary and as
coarse as possible.

Refining the whole mesh leads to the best error reduction, but might not be necessary.
Some parts with fine structures might need a high mesh resolution whilst for regions of
homogeneous intensity it is not necessary to refine the mesh. Global refinement would
produce more unknowns than needed to reduce the error below a given tolerance. To
save computation time and memory space we only want to refine the regions requiring
more resolution due to high curvature or rapidly changing speed functions and coarsen
parts that do not need high resolution. This process is called local refinement.

At the same time some parts of the mesh might be finer than necessary and can
therefor be coarsened. This will lead to a larger error, but it will also decrease the
amount of unknowns and therefor speed up the further computations. The marking
strategy checks how much the error increases when coarsening the elements and if it
is less than a given tolerance,it will be coarsened. In Figure 2 it shows the evolution
of the number of DOFs with and without coarsening for the artificial test data set
"Test Spheres" by Stefan Röttger[Röt06]. There are different strategies implemented in
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Figure 2: Number of DOFs

ALBERTA for deciding which elements have to be refined and which need coarsening.
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4 Initialization of parameters and structures

4. Initialization of parameters and structures
At the beginning all parameters have to be initialized. Some of the parameters are
pre-set in the code others change from problem to problem so they are read in from a
separate initialization file. Furthermore the 3D image data has to be read in.

4.1. Parameters

There are some parameters that we want to be able to tweak without having to compile
the code again. Those are e.g. the parameters defining name of the input, output and
macro files and the number of smoothing steps, but also the parameters that are used
by the ALBERTA routines for the solution of the LSE and for mesh adaption. Those
are pre-initialized with default values, but we would like to initialize some of them
differently. The parameters that should differ from the default values as well as the
other parameters we might want to tweak are included in a parameter file that is read
in at the beginning. You can find an example file in appendix IV.

4.2. Finite element space

ALBERTA offers Lagrange finite elements up to order four. We are using piecewise
linear finite elements which are defined by their values at the vertices of the trian-
gulation, so each (tetrahedron) element is defined by four basis functions. The basis
functions and DOFs together with the underlying mesh define the finite element space.
The underlying mesh holds all the information about the triangulation. The data for
the macro triangulation is read in from a simple ASCII-file that gives information
about the number of vertices and elements, the element boundaries and neighbors and
determines the refinement edges. We use a macro file defining a standard triangulation
of a cube in R

3 centered at the origin with edge length 2. The cube has eight vertices
and six elements, all meeting at one diagonal that is marked as the refinement edge.
In Figure 3 this would be the line connecting node 0 and node 5.

0 1

46

7

2 3

5

Figure 3: Macro triangulation
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4 Initialization of parameters and structures

4.3. Initial data of the equation

The boundary values and right hand side function f are set to zero. The simulation is
started with an initial function u0. Assuming that the segmented object is placed in
a central position, the initial function is given as a peak in the center of the domain.
Different functions can be used, all of them having their peak with value 1 in the center
point and decreasing with growing distance from the center down to value 0. For most
of our tests we set the initial function to u0 = 1 − |x|2 which can be seen in Figure 4.

Figure 4: The initial level set function u0 (left) and only ten level sets of the initial
function (right).

If smaller objects are to be segmented the initial data function should be adjusted,
see 7.4.

4.4. Input image

We work with gray scale images representing slices of the volume we want to segment.
Those images are read in and their intensity value are stored and mapped on to finite
element space. In the plain PGM format the pixels’ intensity values are given in decimal
notation formatted as ASCII characters. The file starts with the header giving the
maximum gray value maxval and the height and width of the image. It is followed by
a raster of height rows consisting of width gray values. Each gray value is a number from
zero through maxval, where zero equals black and maxval equals white. The depth of
the volume is given by the number of PGMs and is read in from the parameter file.

The gray scale images in plain PGM format can be defined as intensity maps that
assign an intensity I(x1, x2) to each pixel (x1, x2). Composing the intensity maps of
the 2D slices, leads to an intensity map I3D(x1, x2, x3) of the volume.

It is assembled by looping over all PGMs and saving its gray values in a 3D array
that is dynamically allocated. For each PGM first the header is read to obtain the
height and width and then the gray values are saved by looping through the rows. In
the process the overall maximum gray value MAXV AL is detected and saved.
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5 Adaptive algorithm

The intensity values have to be mapped onto the discrete mesh which underlies the
finite element space to obtain the intensity map I(x, y, z) = I0 that assigns an intensity
value to every DOF. If the used triangulation is not of a unit cube the offset has to
be considered. Assuming that dx, dy, dz are the diameters of the mesh in the respective
dimensions, the mapping assigns a normalized intensity value ∈ (0, 1) to every point
(x, y, z) on the discrete mesh:

I(x, y, z) = I3D(x1, x2, x3)
MAXV AL

,

where

x1 = width

dx

(x − xoffset), x2 = height

dy

(y − yoffset), x3 = depth

dz

(z − zoffset).

5. Adaptive algorithm
After reading in all input parameters and data the actual calculations can begin.

5.1. Initial mesh adaption

Before starting the adaptive algorithm, the initial mesh has to be adapted to the
problem. That is to say the mesh is adjusted to fit the given volume that we want to
segment. The mesh should be fine in the neighborhood of edges and coarse in continuous
regions. As not all edges are visible in the image itself the mesh will be further adjusted
later on, but at least where the edges are visible the mesh should be appropriately
refined. For initial adaption the equidistribution strategy (ES) has turned out to give
good results. In some cases, especially if the image is not very detailed, the guaranteed
error reduction strategy (GERS) gives a sufficiently fine resolved grid with a smaller
amount of DOFs, which speeds up the simulation. In Figure 5 you can see a slice of
a simple and a complex 3D image mapped on the initial mesh before refinement and
after refinement with either ES or GERS strategy.

5.2. Mesh adaption

As the problem to be solved is time dependent, the mesh is adapted in every time step
using a posteriori error estimators. We use an explicit strategy where the time step is
constant and the method to mark which elements have to be refined or coarsened is
GERS. In each time step the mesh is adapted based on the error estimate computed
from the discrete solution uh from the previous time step. The DOF indexes are com-
pressed automatically after mesh adaption. Then the current time step is solved on the
adapted mesh (see section 5.3) and the error estimators are computed by a call to an
ALBERTA intern function.
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5 Adaptive algorithm

original image no adaption GERS ES

Figure 5: One slice of a complex (top) and a simple (bottom) image interpolated on
the mesh after initial adaption with different adaption strategies.

This leads to Algorithm 2 for one time step.

Algorithm 2 One time step
1: Start with given tolerance tol, time step size τ , the triangulation Tt,n from the

previous time step t and the error estimate η computed from the discrete solution
ut,n on Tt,n

2: Tt+τ,0 = Tt,n

3: n := 0
4: t := t + τ
5: while η > tol do
6: Mark elements for refinement or coarsening using GERS
7: Adapt mesh Tt,n producing Tt,n+1
8: Build LSE: Assemble system matrix and right hand side → algorithm 3
9: Solve the discrete problem for ut,n+1 on Tt,n+1

10: Compute error estimate η
11: n := n + 1
12: end while

After each time step the finite element function is normalized so that the values of
the finite element functions lie between 0 and 1 and the L2-norm ||un−1 − un||2 = ητ

of the difference between the old and the current time step is calculated. So while η is
the tolerance for the local mesh adaption that is done in each time step, ητ acts as the
stopping criterion for the whole algorithm, see Algorithm 1.

As the algorithm gets slower and consumes a lot more memory space with an in-
creasing amount of unknowns, it might be necessary to restrict the amount of DOFs
by disabling the refinement if the amount of DOFs exceeds a given limit maxDOFs.
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6 Output

The mesh can now still be coarsened but not further refined. Only if the amount of
DOFs falls below maxDOFs again, the refinement is re-enabled. At a certain point no
more coarsening is possible and the amount of DOFs is above maxDOFs, so the algo-
rithm will keep working with the DOFs given at that point. This will result in lower
quality and resolution of the solution than a calculation with an unlimited amount
of unknowns, but it speeds up the computation on small data sets and it makes the
computation on big data sets possible.

5.3. Assemblage and solution of the discrete system

As established in Part I the problem is solved by quadrature on finite elements, leading
to the linear system of equations (13) built up by the stiffness and mass operators
that are defined on each element. We want to solve the discrete system, where the
system matrix L = C + M as well as the right hand side vector f = M

N∑
j=1

um−1
j

need information from the mass and/or stiffness matrix. Those matrices are updated
in every step by looping over all elements, calculating the local contribution and adding
it to the global matrices. The local contribution of each element is calculated by calling
functions that evaluate Ā (11) and c̄ (10) at the given quadrature points. This includes
the evaluation on all quadrature nodes of the edge detector g as well as the square root
term that is calculated with the discrete solution um−1.

Algorithm 3 Assemblage
1: Initialize functions to calculate Ā and c̄
2: for all Elements S ∈ T do
3: Calculate ĀS and c̄S

4: Calculate integrals CS and MS

5: Add CS and MS to global matrix L and MS to global matrix f
6: end for

For the solution of the linear system ALBERTA offers an orthogonal error method
(OEM) interface. The LSE Lum = f (13) is solved with a Conjugate Gradient solver.

6. Output
To display a final level set um, we use different methods.

For once ALBERTA provides a routine that converts the ALBERTA mesh structure
into an unstructured tetrahedron grid saved in VTK format that can be displayed
with ParaView. ParaView is an open-source application that facilitates interactive 3D
data visualization. We mainly use the clip tool, contours filter and threshold filter
for the extraction of sub-regions and isosurfaces and the histogram filter to display the
distribution of the intensity values. To compare consecutive time steps a programmable
python filter can be applied.
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6 Output

The other tool we are using is the volume renderer V 3: Versatile Volume Viewer
that uses the pre-integration technique to display volume data. The volumes color,
opacity and intensity can be adjusted interactively by drawing transfer functions. The
histogram of the volume is depicted by default. The tool is suited for highlighting
different parts of the model in different colors to distinguish between the real boundaries
and subjective surfaces that have been detected with the algorithm and for displaying
several semi-transparent layers at the same time.

V 3 offers a routine to convert a set of PGMs to a pvm file which will then be displayed
by the volume renderer. Thus only the PGM output had to be programmed. It is basi-
cally the reversion of the input algorithm. By default PGMs in the same size (width ∗
height), quantity (depth) and with the same range of gray values (0, . . . MAXV AL) as
the ones read in the input routine are given out. A 3D array is dynamically allocated
by looping over depth, height and width. The evaluation of the finite element functions
is done locally on single elements using barycentric coordinates. Hence to read out the
value at a certain world coordinate, the element (simplex) at that location and the
corresponding barycentric coordinates have to be found. This is done by calling an
ALBERTA intern function with the respective coordinate (x, y, z), where

x = xoffset + (k + 0.5) ∗ dx

width
, k ∈ {0, 1, . . . width}

y = yoffset + (j + 0.5) ∗ dy

height
, j ∈ {0, 1, . . . height}

z = zoffset + (i + 0.5) ∗ dz

depth
i ∈ {0, 1, . . . depth}.

After obtaining the element and the barycentric coordinates of the given point, the
value of the finite element function at this location is calculated by calling another
ALBERTA function and it is saved into the array at the position (i, j, k). The 3D array
can be seen as an array of 2D arrays. Each 2D array is written into one PGM file,
resulting in depth PGMs.

While ParaView offers many tools to visualize and analyze the data it runs very slow
on big data sets, especially when it comes to volume visualization and transparency. V 3

on the other hand provides smooth volume presentation, but less tools for quantitative
analysis of the intensity values.
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7 Synthetic 3D images

Part III.
Results
In this section we present the results we obtained using our model on several synthetic
and real images, aimed at performing modal completion on objects with interrupted
boundaries. The tests are run on a 64bit operating system Ubuntu in Version 12.04
carried out on an 8 core processor of type Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
with 20480kB (20MB) Intel R© Smart Cache and 16347480 kB (16GB) main memory
thereof 12814408 kB (12,22GB) available.

7. Synthetic 3D images
Testing on synthetic images has the advantage that image defects like missing pixels,
holes in the boundaries, noise or blur can be added purposely and in a controlled way.
The results can be easily evaluated as the correct solution is known beforehand. All
synthetic images used here are created programmatically by the author.

7.1. Boundary completion

The aim was to fill in missing boundaries and perform modal completion. The algorithm
will find the existent boundaries as well as the modal boundaries which might be
perceived by the human visual system although in fact they are not visible in the
image. The Kanizsa triangle, see Figure 6, is a classical example for modal completion.

Figure 6: The Kanizsa triangle

It shows that the human brain can complete objects with boundaries that are not
characterized by gradients: One can perceive a triangle with well defined contours
although only three circles with a missing sixth are depicted.
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7 Synthetic 3D images

The algorithm by Michael Fried was able to detect those subjective contours in the
Kanizsa triangle [FM09] . Now this example can be transformed into a 3D problem -
a "Kanizsa pyramid" or alternatively a "Kanizsa cube". The Kanizsa pyramid consists
of 4 spheres each missing a pyramid shaped part and the Kanizsa cube consists of 8
spheres each missing an eighth.

The algorithm was run with the number of DOFs restricted to 200.000. The pyramid
and cube are correctly segmented as to be seen in Figure 7.

Figure 7: Segmented Kanizsa cube and pyramid segmented to precision δ = 0.001.

A problem that occurs is that the grid is very fine where the edges are visible in the
initial image, but too coarse in the areas of modal completion, see Figure 8. This is
the case because in the initial adaption the mesh is adapted to be very fine where the
real boundaries in the image were. The number of DOFs then soon exceed maxDOFs

so the areas of modal boundaries are not refined. Running the algorithm with a higher
maxDOFs will give more accurate results.

Figure 8: Grid on the segmented Kanizsa cube after removing the spheres via threshold
filter in ParaView.
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7 Synthetic 3D images

The results also showed, that a too coarse resolution of the input images has a
negative influence on the quality of the modal completion. The boundaries will not be
smooth and the pixel edge length is too long in comparison to the image itself. In such
a case the modal boundaries will not be detected if they do not coincide with the pixel
edges.

Another example is shown in Figure 9. The image is composed of two gray levels,
showing a cube with a hole in its surface. The algorithm detects the existing boundaries
as well as the missing ones. In the resulting image the intensity will converge to three

Figure 9: The complete segmentation of a cube with a quadratic hole on one side (left)
and extracted with a threshold filter: the segmented real boundary (middle)
and the inside of the cube, giving the inner boundary (right).

different values: the background intensity converges to zero, the values on the existing
boundary of the cube approximates 0.75 and the inside of the cube has an intensity
approximating 1 as can be seen in Figure 10. This means all level sets with a value
between 0 and 0.75 built up at the outer boundary of the cube and all level sets with
a value greater than 0.75 meet at the inner and the modal boundary of the cube.
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Figure 10: Histogram showing the amount of DOFs with a certain intensity value.
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7 Synthetic 3D images

7.2. Nested objects

Although the algorithm is not constructed to find boundaries of several separate ob-
jects, they can be found if the boundaries of the two objects are not too close to each
other. Also, boundaries of nested objects can be detected. Figure 11 shows a clip of the
detected boundaries of a hollow cube with a massive sphere inside. The background
intensity converged to 0. All level sets with a value between 0 and 0.88 are built up at
the outer boundary of the cube. On the inner boundary of the cube the level sets with
an intensity greater than 0.88 and smaller or equal to 0.93 meet. All level sets with a
higher value than 0.93 define the boundary of the sphere.

Figure 11: Clip of the segmented boundaries of a massive sphere inside a hollow cube.

7.3. Noisy or blurred images

Many images contain blurry areas, noise and other artifacts due to how they were
acquired.

As shown in Figure 12, the algorithm can detect blurry edges, but the boundaries
of the segmented object will not look as smooth as they would if the input image was
clear.

Figure 12: Slice of the input volume and segmentation of a clear (left) and blurred
sphere (right).

26



7 Synthetic 3D images

How the algorithm handles the different kinds of noise is tested on volumes that are
deliberately corrupted with noise. First we look at random noise which is characterized
by fluctuations of the intensity above and below the image intensity. If the noise is
low pronounced, that is the noise pixels’ intensity only slightly varies from the correct
intensity, the algorithm does not have problems finding the correct edges and can be
run as if no noise existed, see Figure 13.

Figure 13: Slice of a blurred sphere with low pronounced random noise (left) and the
segmented object (right).

If the intensity fluctuations are very high so the noise pixels’ intensity varies a lot from
the correct intensity, the algorithm detects them as boundaries and tries to segment
them. To avoid that those noise pixels are treated the same as real boundaries they
need to be smoothed out at the beginning. This can easily be done by setting the edge
detector g = 1 for the first few steps. This way the level sets move under their mean
curvature and do not stop on the noise boundaries. However, if the number of smoothing
steps is too large, the real boundaries will vanish and into the bargain the number of
needed iterations increases with the number of smoothing steps. Consequently the
number of smoothing steps should be as low as possible.

The smoothing is tested on an image of a white sphere on black background located
in the center of the volume, see Figure 14. A number of 3 smoothing steps turned out
to be sufficient to remove all noise and segment the sphere in 33 iterations. The same
sphere without smoothing needs 30 iterations to be segmented, so the smoothing did
not affect the computation time much, it just removed the noise. Running the same case
with 10 smoothing steps needs 49 iterations, without giving a better result than the 3-
steps-smoothing. With noise, the number of DOFs after initial adaption is already very
high, see Table 1. This results in very high computation times and is nearly impossible
to calculate on one processor due to the big amount of unknowns that need a lot of
memory space.

If the random noise is of a very low frequency while having high intensity fluctuations
it cannot be removed with the same technique, because too many smoothing steps
would be needed. To fully remove it the smoothing would remove the real boundaries,
too. So while the algorithm can remove high frequency random noise, images with low
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7 Synthetic 3D images

Original Image 0 smoothing steps,
30 iterations

3 smoothing steps,
33 iterations

10 smoothing steps,
49 iterations

Figure 14: 0.1% of the pixels are set to maximum intensity.

Noise DOFs
0.0% 2.354.424
0.1% 2.376.589
0.2% 3.173.238
0.5% 4.490.991

Table 1: Number of DOFs after initial adaption for different noise components in a
100x100x100 px volume of a sphere with radius 33 px.

frequency noise have to be preprocessed. The same applies to other artifacts like ring
or metal artifacts, beam hardening and scatter. For further information on artifacts
see [BF12], [BK04].

7.4. Small objects

If the objects to be segmented are very small in comparison to the domain it is rec-
ommended to use an initial function that decreases faster and/or is masked as it will
reduce the number of needed iterations.

Here, we will just look at the masking. Assuming the domain is quadratic, if we want
to segment a cube with an edge length of width/4 that is located in the center of the
domain described in Section 3, we know that there are no boundaries to be detected
outside of a radius r =

√
2 · (width

2·4 )2. Hence we can set the initial function to

u0 =

⎧⎪⎨
⎪⎩

1 − |x|2 if r < k

0 if r ≥ k.

Good results are achieved for k ∈ (r, width/2), the best for k = width/4 = 0.5, see
Figure 15. Without masking, the algorithm only stops after 67 iterations / 298 seconds.
In general this can not only be applied to small objects of course. Most of the scans
are centered in the middle of the domain, not protruding out of the unit ball (radius
= width/2), so a masking with k = width/2 can almost always be applied.
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Figure 15: Number of iterations and computation time over varying masking radius.

8. Real 3D images
Real 3D images most of the time consist of a lot more gray value levels than the
synthetic images that have been shown in this work so far. They might include noise
and image artifacts. The algorithm has been tested on several input volumes taken
from "The Volume Library" [Röt06] that offers volume datasets in PVM format. The
datasets contain volume data acquired by MRI and CT and can be converted into a
set of PGMs by the V 3 [Röt12].

First the application to the input volume "Stanford Bunny" will be discussed. The
volume is a CT scan of the terracotta "Stanford Bunny" scanned by Terry S. Yoo, High
Performance Computing and Communications, National Library of Medicine, USA.
The intensity values denote the electron-density of the subject. The volume consists of
361 slices of 512x512 px.

When not limiting the amount of DOFs after 24 steps we have 5.382.066 DOFs
with another 30.077.177 elements marked for refinement and only 12 elements marked
for coarsening. On the attempt to adapt the mesh now, the algorithm crashes as a
bus error occurs. Too much memory is requested to do the necessary calculations.
Hence the amount of unknowns needs to be limited as mentioned in 3.3. When setting
maxDOFs to 200.000 the amount of DOFs will stay at 219.860 after 15 steps. The
bunny is successfully segmented, the boundaries are detected correctly and holes that
are located at the bottom of the bunny are filled. The result can be seen in Figure 16.

The data set includes some artifacts that are detected as boundaries and therefor
segmented. To get better results the artifacts have been (partly) removed by hand, see
Figure 17 and 18.
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8 Real 3D images

δ = 0.01, 44 iterations, 10 min δ = 0.001, 279 iterations, 47 min δ = 0.0001, 633 iterations,
1 h 41 min

Figure 16: The segmented bunny with artifacts at different precision stages under a
0.01 threshold.

δ = 0.01, 43 iterations, 6 min δ = 0.001, 271 iterations, 45 min δ = 0.0001, 400 iterations,
1 h 6 min

Figure 17: The segmented bunny at different precision stages under a 0.01 threshold.
Most of the artifacts were removed manually prior to computation.

(a) (b) (c) (d)

Figure 18: Slice 246 of (a) the original input volume, (b) the segmented bunny, (c)
the input volume after partial artifact removal and (d) the corresponding
segmentation
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8 Real 3D images

The same way CT scans of living things can be segmented. The algorithm has been
applied to the volume "Baby Head" by Jason Bryan that is distributed with the VolSuite
package and "Head (Visible Male)" from the The Visible Human Project, both found in
the Volume Library. The outer boundary is correctly detected as to be seen in Figure
19 and Figure 20.

Figure 19: Segmentation of the volume "Baby Head".

Figure 20: Segmentation of the volume "VisMale".
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Part IV.
Conclusion and outlook
The aim of this work was to extend the 2D segmentation algorithm by Fried [FM09]
to three dimensions and test whether it holds the same functions as in 2D, that is the
ability to find real and modal boundaries, fill in holes in interrupted edges and work
despite of noise or blurriness of edges. The algorithm relies on the subjective surface
method solved with finite elements and adaptive mesh refinement. The main attention
was directed to the 3D output, and the testing of the algorithm’s capabilities. For that
reason the algorithm was run on several synthetic images created by the author as well
as on real 3D images taken from the Volume Library [Röt06].

With the developed tool it is possible to read in 3D volumes in the form of 2D slices
in PGM format, segment the given objects and output them in different formats to
inspect them either in ParaView, in V 3 or as 2D slices in PGM format.

In the tests presented in this work it became apparent that the algorithm is able
to detect boundaries in synthetic and real 3D images with both noise and blurred
regions. It also showed that missing boundaries are found and the modal completion
is performed correctly.

A problem that arose is that for the 3D volumes, especially images with big gradients,
the algorithm needs a lot of memory space as there are a many unknowns. Thus, in
many cases the memory of one machine is not sufficient. Furthermore, calculating with
a great amount of unknowns and setting the stopping tolerance very low to obtain
good results leads to long computation times. Rewriting the algorithm to run parallel
on a distributed memory system would speed up the computation tremendously and
lead to more accurate results as the mesh could be further refined.
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Parameter file

% Macro t r i a n g u l a t i o n
macro f i l e name : Macro/macro_big . stand neum
g l o b a l r e f inement s : 4
polynomial degree : 1
lower l e f t 0 : −1. %o f f s e t
lower l e f t 1 : −1.
lower l e f t 2 : −1.

% So lu t i on o f LSE
s o l v e r : 2 % 1 : BICGSTAB 2 : CG 3 : GMRES 4 : ODIR 5 : ORES
s o l v e r max i t e r a t i o n : 1000
s o l v e r t o l e r a n c e : 1 . e−4
s o l v e r i n f o : 2
s o l v e r precon : 1 % 0 : no precon 1 : d iag precon

% Error e s t imat ion
adapt−>t o l e r a n c e : 0 .125
adapt−>timestep : 0 .005
adapt−>r e l _ i n i t i a l _ e r r o r : 1 .
adapt−>re l_space_error : 1 .
adapt−>rel_t ime_error : 2 .
adapt−>max_iteration : 1
adapt−>i n f o : 3
e s t imator C0 : 0 .0
e s t imator C1 : 1 .0
e s t imator C2 : 1 .0
e s t imator C3 : 1 .0

% I n i t i a l mesh adaption
adapt−>i n i t i a l −>s t r a t e g y : 3 % 0=none , 1=GR, 2=MS, 3=ES , 4=GERS
adapt−>i n i t i a l −>max_iteration : 10
adapt−>i n i t i a l −>i n f o : 10
adapt−>i n i t i a l −>coarsen_al lowed : 1
adapt−>i n i t i a l −>r e f i n e _ b i s e c t i o n s : 2
adapt−>i n i t i a l −>coar s en_b i s e c t i on s : 1

% Mesh adaption
adapt−>space−>s t r a t e g y : 4 % 0=none , 1=GR, 2=MS, 3=ES , 4=GERS
adapt−>space−>GERS_theta_star : 0 .75
adapt−>space−>GERS_nu: 0 . 1
adapt−>space−>GERS_theta_c : 0 .25
adapt−>space−>max_iteration : 1
adapt−>space−>coarsen_al lowed : 1

% Time d i s c r e t i z a t i o n
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theta : 1 . 0 % 1=e x p l i c i t , 0 . 5 =semi−i m p l i c i t , 0= i m p l i c i t
adapt−>end_time : 10 .0

% Evans−Spruck r e g u l a r i z a t i o n
e p s i l o n : 1 . 0
e p s i l o n s c a l i n g : 30

% Stopping c r i t e r i o n
de l t a stop : 0 .001

% Smoothing s t ep s
smooth : 0

% Input
pgm f i l e : PGMS/TestVolume/ t e s t
number o f pgms : 100

% Output
pgm o u t p u t f i l e : te s tSegmentat ion
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