Interpolation periodischer Funktionen


Hausarbeit, 2002

12 Seiten, Note: gut (2)


Leseprobe

Gliederung

1. Einleitung

2. Polynom-, Spline- oder trigonometrische Interpolation?

3. Die Interpolation periodischer Funktionen
3.1. Theoretische Grundlagen
3.2. Alles aus diesem Gebiet zusammengefasst

4. Programm zur Interpolation periodischer Funktionen

5. Beispiel zur Interpolation periodischer Funktionen

6. Literatur

1. Einleitung

Häufig kommt es vor, dass in den verschiedensten Bereichen Daten dargestellt werden müssen, die einen periodischen Verlauf annehmen. Dies ist zum Beispiel in der Medizin – bei der Darstellung von Fieberkurven, Herzfunktionen o.ä. – der Fall. Aber auch bei den Oszillographen in der Physik oder bei der geschichtlichen Analogrechnung oder bei Berechnungen durch das Messen von Strömen. Um diese Daten praktisch anschaulich darstellen zu können, empfiehlt es sich, diese durch eine Kurve zu interpolieren – was in der Praxis auch so gemacht wird. Hier kommt nun die Numerischen Mathematiker ins Spiel, zu dessen Teilgebieten ja die Interpolation von Datenkurven/ Funktion gehört.

Die nächste Frage ist nun, auf welche Weise diese periodischen Datenkurven oder Funktionen interpoliert werden sollen. Als Ausgangsfunktion wären hier Polynome, Splines oder auch Winkelfunktionen denkbar. Welche am besten für die Interpolation solcher periodischer Datenkurven oder Funktionen geeignet sind, soll im nächsten Kapitel erörtert werden.

Weiter möchte ich dann auf die theoretischen Grundlagen der Interpolation periodischer Funktionen eingehen, im vierten Kapitel versuchen, ein Programm dazu zu erarbeiten und zum Schluss ein selbstgewähltes Beispiel mit meinem Programm zu bearbeiten und gegebenenfalls zu diskutieren.

2. Polynom-, Spline- oder trigonometrische Interpolation?

Da schon zu Anfang der Vorlesung „Numerische Mathematik“ gezeigt wurde, dass bei einer Polynominterpolation mit ansteigender Datenmenge auch der Oszillationsgrad ansteigt und somit die Interpolation zwischen den Messwerten gänzlich ungenau sind, scheidet diese Methode schon von vornherein für mich aus.

Die Idee, mehrere kubische Funktionen aneinander zu reihen erscheint mir schon als viel günstiger, da es hier zu keiner so hohen Oszillation kommen kann. Aber dennoch muss man bei den Übergängen darauf achten, dass die Gesamtfunktion glatt, d.h. jeweils die Folgefunktionen an den Knüpfstellen mindestens in den Funktionswerten und den ersten beiden Ableitungen übereinstimmen. Außerdem muss die Periodizität durch die zusätzliche Bedingung, dass in einem bestimmten immer wiederkehrenden Intervall die untere und obere Grenzstelle in Funktionswert und mindestens der ersten Ableitung übereinstimmen, gegeben sein.

Dem entgegen wäre es doch meiner Meinung nach viel sinnvoller die schon vorhandene Eigenschaft der Periodizität der Winkelfunktionen, die in einem bestimmten Intervall hinreichend glatt (also hinreichend oft differenzierbar) und in Funktionswert und Ableitungen der unteren und oberen Grenzstellen übereinstimmen, auszunutzen. Aus diesem Grunde haben sich Mathematiker wie SANDE/ TUCKEY, GOERTZEL, REINSCH u.a. auch genau damit befasst und Berechnungsmethoden dazu erarbeitet.

3. Die Interpolation periodischer Funktionen

3.1. Theoretische Grundlagen

Abbildung in dieser Leseprobe nicht enthalten

[...]

Ende der Leseprobe aus 12 Seiten

Details

Titel
Interpolation periodischer Funktionen
Hochschule
Martin-Luther-Universität Halle-Wittenberg  (Numerische Mathematik)
Veranstaltung
Numerik-Praktikum
Note
gut (2)
Autor
Jahr
2002
Seiten
12
Katalognummer
V22689
ISBN (eBook)
9783638259637
Dateigröße
679 KB
Sprache
Deutsch
Anmerkungen
Numerische Theorie zum Thema Interpolation periodischer Funktionen, selbst geschriebenes Programm zu dieser Interpolation (Turbo Pascal) und selbstgewähltes Beispiel für dieses Programm im Vergleich mit dem wahren ergebnis.
Schlagworte
Interpolation, Funktionen, Numerik-Praktikum
Arbeit zitieren
Thomas Schrowe (Autor), 2002, Interpolation periodischer Funktionen, München, GRIN Verlag, https://www.grin.com/document/22689

Kommentare

  • Noch keine Kommentare.
Im eBook lesen
Titel: Interpolation periodischer Funktionen



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden