Leseprobe
Inhaltsverzeichnis
1. Einleitung
2. Labordurchführung
2.1. System Kragarm
2.1.1. Balkenmodell
2.1.2. Schalenmodell
2.1.3. Volumenmodell
2.2. 2D Scheibe/ Platte mit einspringender Ecke
2.2.1. Einfluss einer einspringenden scharfen Ecke
2.2.2. Einfluss einer Ausrundung und lokale Netzverfeinerung
2.2.3. Freistich
2.3. Beulanalyse
2.4. Modalanalyse
2.5. Transiente Berechnung
3. Fazit
4. Abbildungsverzeichnis
5. Tabellenverzeichnis
6. Literaturverzeichnis
1. Einleitung
Das Labor FEM dient dazu, den in der Vorlesung vermittelten Stoff in der Praxis anzuwenden. Es wird die grundlegende Handhabung mit dem Programm ANSYS an einfachen statischen Systemen vermittelt. Dabei ist es wichtig die Parameter individuell auf das gewünschte Bauteil anzupassen, um eine korrekte Berechnung zu gewährleisten. Denn in der Praxis, gewinnt die FEM immer mehr an Stellenwert, jedoch kann das Programm nur dann korrekt arbeiten, wenn der Bediener die individuellen Randbedingungen des jeweiligen Bauteils beachtet.
2. Labordurchführung
Im Labor wurden an mehreren Veranstaltungen verschiedene statische Systeme in unterschiedlichen Modellen erstellt und berechnet.
2.1. System Kragarm
Die erste Aufgabe bestand in der Erstellung eines Kragarms als I - Träger. Dieser wird in drei verschiedenen Modellen ausgeführt welche am Ende miteinander verglichen werden.
Abbildung in dieser Leseprobe nicht enthalten
Abbildung 1: Geometrische Abmessungen Kragarm
Abbildung in dieser Leseprobe nicht enthalten
2.1.1. Balkenmodell
Aufgabe ist es, einen Balken zu erstellen, bei dem das Geometriemodell aus einer Linie besteht. Zunächst werden die Materialeigenschaften wie der E – Modul und die Querkontraktionszahl zugewiesen. Dann wird in der gewählten Ebene eine Linie der Länge l erzeugt. Der Linie wird nun ein Querschnitt zugewiesen, in diesem Fall ein I – Profil. Als nächstes wird der Balken mit einer Kraft belastet und auf der Gegenseite fest gelagert. Das fertige Balkenmodell wird jetzt durch das Programm auf Verformungen berechnet.
Abbildung in dieser Leseprobe nicht enthalten
Abbildung 2: Verschiebung
Das Programm liefert die im Bild ersichtliche Belastungsanalyse, in der die Verformungen in den einzelnen Netzelementen bestimmt wurde. Die größte Verformung tritt erwartungsgemäß im vorderen Bereich (rot gekennzeichnet) auf.
Tabelle 1: Verschiebung in Abhängigkeit von Knoten und Elementen
Abbildung in dieser Leseprobe nicht enthalten
Aus der Tabelle ist ersichtlich, dass ein Element zwischen den Systemknoten genügt, um die richtige Lösung zu berechnen. Es verhält sich Superkonvergent, dies ist eine Ausnahme die bei Balken auftritt.
Beim Punkt „ Ohne Mittenknoten“ ist jedoch noch ein interner Mittenknoten vorhanden. Dieser wird durch die Eingabe des Befehls
/prep7
etcon,off
keyopt,1,3,0
/sol
abgeschaltet.
Tabelle 2: Verschiebung ohne Mittenknoten
Abbildung in dieser Leseprobe nicht enthalten
Jetzt da tatsächlich keine Mittenknoten mehr vorhanden sind, konvergiert die max. Verschiebung gegen die richtige Lösung. Abschließend ist also zu sagen, dass die korrekte Lösung von der Netzdichte und der Formulierung des Elements abhängig ist.
2.1.2. Schalenmodell
Die zweite Aufgabe beschäftigt sich ebenfalls mit dem Kragarm unterscheidet sich aber durch die Modellierung. In diesem Fall wird das Bauteil durch Schalen erstellt. Dazu werden drei Skizzen angefertigt, welche sich gegenseitig überschneiden (siehe Abb.3). Anschließend werden diese extrudiert, wobei darauf zu achten ist, den Steg gefroren hinzuzufügen. Letztlich werden die Teile noch zu einer Baugruppe verbunden.
Abbildung in dieser Leseprobe nicht enthalten
Abbildung 3: Einzelskizzen
Vor der Berechnung wird die einwirkende Kraft sowie die fixierte Lagerung am Modell eingegeben. ANSYS kann nun das Bauteil auf Biegung und Schubspannung berechnen.
Tabelle 3: Biegung/Spannung in Abhängigkeit der Elementgröße bei Punktlast
Abbildung in dieser Leseprobe nicht enthalten
„Konvergiert“ „nicht Konvergiert“
Abbildung in dieser Leseprobe nicht enthalten
Abbildung 4: Durchbiegung/ Schubspannung Schalenelement (Elementgröße 17,5)
Beim Betrachten der Tabelle fällt zunächst auf, dass sich die Biegung konvergent verhält. Die Schubspannung hingegen variiert mit der Elementgröße. Je feiner die Netzstruktur desto größer werden die Spannungen. Zu begründen ist dies damit, dass die Kraft als punktförmige Einzellast in das System eingeleitet wird.
Es gilt:
Abbildung in dieser Leseprobe nicht enthalten
wenn die Fläche (A) aber gegen null geht → wird die Spannung unendlich groß (Spannungssingularitäten).
Um eine korrekte Berechnung der Schubspannung zu erreichen wird im nächsten Schritt die Punktlast durch eine Streckenlast ersetzt. Dazu wird die Geometrie des Trägers geschnitten. Das Problem der Spannungssingularität kann so unterbunden werden, weil die Last nicht mehr nur punktuell wirkt.
Abbildung in dieser Leseprobe nicht enthalten
Abbildung 5: Kragarm mit Streckenlast
Tabelle 4 : Spannungen in Abhängigkeit der Elementgröße bei Streckenlast
Abbildung in dieser Leseprobe nicht enthalten
Mit verfeinerter Elementgröße wird die Schubspannung konvergent. Der Einsatz einer Streckenlast ist also eine Möglichkeit die Spannungssingularitäten zu verhindern. Die vorhandene Biegung ist etwas geringer, da durch die eingesetzte Streckenlast der wirkende Hebelarm verkürzt wurde.
Alternativ wollen wir nun lokal das Netz verfeinern (Verfeinerung nur im begrenzten gewählten Bereich) siehe Abb.6. Die Gesamtnetzweite bleibt standardmäßig auf 35 eingestellt.
Abbildung in dieser Leseprobe nicht enthalten
Abbildung 6: Lokale Netzverfeinerung
Tabelle 5 : Schubspannung bei lokaler Netzverfeinerung
Abbildung in dieser Leseprobe nicht enthalten
Lokale Größen können auch durch eine lokale Netzverfeinerung hinreichend genau berechnet werden. Eine weitere Möglichkeit wäre auch die automatische Verfeinerung zu nutzen. Diese hat jedoch den Nachteil, dass der betrachtete Bereich nicht beliebig gewählt werden kann.
2.1.3. Volumenmodell
Im Vergleich zu den bisher kennen gelernten Methoden der Modellierung wird der Kragarm hier aus drei Volumenelementen erstellt. Dabei wird zunächst der obere und untere Flansch aus einem Quader erzeugt und anschließend der Steg, der wiederum gefroren hinzugefügt werden muss. Abschließend werden die drei Einzelvolumen zu einer Baugruppe zusammengefügt und können nach Festlegung der Kraft und Lagerung berechnet werden.
[...]