Grin logo
en de es fr
Shop
GRIN Website
Texte veröffentlichen, Rundum-Service genießen
Zur Shop-Startseite › Informatik - Theoretische Informatik

Turbo Dijkstra. Finding Single-Source Shortest Paths on Planar Graphs with Nonnegative Edge Weights in Linear Time

Titel: Turbo Dijkstra. Finding Single-Source Shortest Paths on Planar Graphs with Nonnegative Edge Weights in Linear Time

Seminararbeit , 2021 , 15 Seiten , Note: 1.0 (A)

Autor:in: Anonym (Autor:in)

Informatik - Theoretische Informatik
Leseprobe & Details   Blick ins Buch
Zusammenfassung Leseprobe Details

The need to find shortest paths in a graph from some fixed source vertex to all other vertices is quite obvious and therefore one of the most important problems in graph theory. For general graphs, the standard way to go is the Dijkstra algorithm. On planar graphs, this approach takes linearithmic time in the number of vertices. However, we present an algorithm published by Henzinger et al. in 1997 that accomplishes the task in linear time on planar graphs.

Leseprobe


Inhaltsverzeichnis (Table of Contents)

  • Introduction
  • Prerequisites
    • r-division
    • Recursive r-division
  • The Algorithm
    • Priority queue data structure
    • Algorithm structure

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This paper presents an algorithm for finding single-source shortest paths in planar graphs with nonnegative edge weights, achieving a linear runtime. The algorithm leverages the concept of recursive r-divisions to subdivide the graph into smaller regions, utilizing priority queues for efficient path calculation.

  • Shortest Path Algorithms
  • Planar Graphs
  • Recursive r-divisions
  • Priority Queues
  • Linear-Time Algorithms

Zusammenfassung der Kapitel (Chapter Summaries)

  • Introduction: This section introduces the problem of finding shortest paths in planar graphs, highlighting the need for efficient algorithms and the limitations of Dijkstra's algorithm in this context. It presents the algorithm proposed by Henzinger et al. [HKRS97] that achieves linear time complexity.
  • Prerequisites: This chapter defines essential concepts like r-divisions and recursive r-divisions, which are crucial for understanding the algorithm's operation. It describes the properties of r-divisions and the use of recursive divisions to break down the graph into manageable components.
  • The Algorithm: This chapter details the structure of the algorithm, emphasizing the use of priority queues to efficiently manage path calculations within the graph's regions. It describes the three procedures: sssp, update, and process, explaining their roles in the overall algorithm.

Schlüsselwörter (Keywords)

This paper focuses on the efficient computation of shortest paths on planar graphs with nonnegative edge weights using recursive r-divisions and priority queues. Key terms include shortest paths, planar graphs, recursive r-divisions, priority queues, and linear-time algorithms. The paper contributes to the field of graph algorithms by providing an optimized solution for the single-source shortest path problem on planar graphs.

Ende der Leseprobe aus 15 Seiten  - nach oben

Details

Titel
Turbo Dijkstra. Finding Single-Source Shortest Paths on Planar Graphs with Nonnegative Edge Weights in Linear Time
Hochschule
Universität Passau
Note
1.0 (A)
Autor
Anonym (Autor:in)
Erscheinungsjahr
2021
Seiten
15
Katalognummer
V1001013
ISBN (eBook)
9783346376480
ISBN (Buch)
9783346376497
Sprache
Englisch
Schlagworte
graph theory planar graphs time complexity linear time shortest paths Dijkstra optimization
Produktsicherheit
GRIN Publishing GmbH
Arbeit zitieren
Anonym (Autor:in), 2021, Turbo Dijkstra. Finding Single-Source Shortest Paths on Planar Graphs with Nonnegative Edge Weights in Linear Time, München, GRIN Verlag, https://www.grin.com/document/1001013
Blick ins Buch
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • https://cdn.openpublishing.com/images/brand/1/preview_popup_advertising.jpg
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
Leseprobe aus  15  Seiten
Grin logo
  • Grin.com
  • Zahlung & Versand
  • Impressum
  • Datenschutz
  • AGB
  • Impressum