Komplexe Zahlen


Facharbeit (Schule), 2001
29 Seiten

Gratis online lesen

Inhaltsverzeichnis

Vorbemerkung

1. Unser Zahlensystem
1.1 Natürliche Zahlen
1.2 Ganze Zahlen
1.3 Rationale Zahlen
1.4 Reelle Zahlen
1.5 Komplexe Zahlen
1.5.1 Historie
1.5.2 Komplexe Zahlen als Lösung quadratischer Gleichungen
1.5.3 Die imaginäre Einheit
1.5.4 Imaginärzahlen und komplexe Zahlen

2. Darstellung komplexer Zahlen
2.1 Summendarstellung
2.2 Paardarstellung, geometrische Darstellung
2.3 Polarkoordinaten-Darstellung (goniometrische Darstellung)

3. Rechnen mit komplexen Zahlen
3.1 Addition und Subtraktion
3.1.1 Mathematische Addition oder Subtraktion
3.1.2 Grafische Addition oder Subtraktion
3.1.2.1 Addition
3.1.2.2 Subtraktion
3.2 Multiplikation
3.2.1 Arithmetische Form
3.2.2 Goniometrische Form
3.2.3 Multiplikation konjugierter Zahlenpaare
3.3 Division
3.3.1 Arithmetische Form
3.3.2 Goniometrische Form
3.4 Potenzieren und Radizieren

4. Komplexe Zahlen in der Praxis

Nachwort: Wie reell sind reelle Zahlen?

Quellen

Vorbemerkung

Von den uns zur Auswahl vorgeschlagenen Facharbeits-Themen haben wir uns für die „komplexen Zahlen“ entschieden. Das Thema hat uns interessiert, weil es – über die bis dahin im Unterricht behandelten Zahlensysteme hinaus – einen Einblick in eine Zahlenwelt schafft, die nicht greifbar zu sein und nur in den Köpfen der Mathematiker zu existieren schien.

Im Zuge der Bearbeitung merkten wir sehr bald, dass auch für die

„ohnmöglichen“ oder „eingebildeten“ Zahlena die Gesetze der Mathematik gelten. Man kann mit ihnen rechnen, sie haben eine praktische Bedeutung für die Physik, wie wir unter Ziffer 4. zeigen werden. Und sie sind gar nicht so unmöglich und imaginär, wie Euler und auch Gauß meinten. Dazu nehmen wir im Nachwort Stellung.

Abbildung in dieser Leseprobe nicht enthalten

Wir haben gemeinsam Materialien zum Thema in der Öffentlichen Bibliothek der Stadt Aachen und im Internet beschafft und anschließend die Arbeit gemeinsam strukturiert. Anschließend haben wir Verantwortlichkeiten für die Bearbeitung der einzelnen Abschnitte vereinbart:

Wir versichern, die Arbeit selbstständig und ohne fremde Hilfe erstellt zu ha- ben. Wir haben keine anderen Hilfsmittel als die im Quellenverzeichnis ge- nannte Literatur verwendet.

Üblicherweise müssen in Facharbeiten wörtliche Zitate und sinngemäße Übernahmen aus den verwendeten Quellen kenntlich gemacht werden. Im Zuge der Bearbeitung sind wir aber zu der Überzeugung gekommen, dass eine solche Kennzeichnung im Fach Mathematik keinen Sinn hat. Die Theorie der komplexen Zahlen und die sich daraus ergebenden Formeln sind in allen Lehrbüchern mehr oder weniger gleich dargestellt. Hier können wir „das Rad nicht neu erfinden“, und insofern ist fast die gesamte Arbeit eine „sinngemäße“, hinsichtlich der Formeln sogar „wörtliche“ Übernahme.

Die erläuternden Texte sind von uns selbst formuliert, die verwendeten Bei- spiele selbst gewählt und berechnet. Insbesondere die Kommentierung im Nachwort stellt eine eigenständige Leistung dar.

Fußnoten wurden – abweichend von der sonst üblichen Nummerierung –mit Kleinbuchstaben gekennzeichnet, um Verwechslungen mit Exponenten zu vermeiden.

Baesweiler, 22. März 2001

Abbildung in dieser Leseprobe nicht enthalten

Fabian Ohler Harald Schmidinger

1. Unser Zahlensystem

Der Bereich der komplexen Zahlen ist Bestandteil unseres Zahlensystems – allerdings ein Bereich, der erst relativ spät „entdeckt“b wurde. Deshalb soll zur Einleitung zunächst ein kurzer Überblick über unser Zahlensystem gegeben werden.

Auffällig ist, dass es stets Problemstellungen gab, die mit den bis dahin be- kannten Zahlen nicht mehr zu lösen waren, und die deshalb eine Erweite- rung des Zahlensystems um weitere Bereiche erforderlich machten. Auch die komplexen Zahlen sind aus einer solchen Notwendigkeit entstanden, wie wir unter Ziffer 1.5 zeigen werden.

1.1 Natürliche Zahlen

Natürliche Zahlen sind die positiven ganzen Zahlen (1, 2, 3, ...). Die Zahl Null ist keine natürliche Zahl. Von den vier Grundrechenarten sind nur Addition und Multiplikation uneingeschränkt möglich. Bei Subtraktion und Division stößt man schnell an die Grenzen der natürlichen Zahlen.

Die natürlichen Zahlen können auf einem Zahlenstrahl dargestellt werden.

1.2 Ganze Zahlen

Die Menge der ganzen Zahlen ergibt sich aus der Erweiterung der natürlichen Zahlen um die Menge der negativen ganzen Zahlen und der Nullc. Die Notwendigkeit negativer Zahlen ergibt sich unmittelbar aus der Subtraktion, nämlich dann, wenn eine größere (ganze) Zahl von einer kleineren (ganzen) Zahl abgezogen werden soll.

In früheren Zeiten erschienen negative Zahlen zunächst sinnlos, z. B. wenn Zahlensysteme im Handel zur Bemessung von Mengen und Gewichten ge- braucht wurden. Heute ist es dagegen selbstverständlich, dass ein Konto ein „negatives Guthaben“ aufweisen kann, dass man also Schulden gemacht hat. Auch in der Physik sind negative Werte üblich, z. B. negative Temperaturen (Temperaturen unter 0 °C).

Die Darstellung der negativen Zahlen auf einem Zahlenstrahl ist nicht mög- lich, da sie links vom Anfangspunkt dieses Strahls liegen würden. Deshalb war eine Erweiterung des Zahlenstrahls zur Zahlengeradend erforderlich, in- dem der Zahlenstrahl am Nullpunkt gespiegelt wird.

1.3 Rationale Zahlen

Rationale Zahlen sind alle Zahlen die sich als Bruch in der Form m

n

darstel-

len lassen, wobei m und n ganze Zahlen sind. m wird Zähler genannt, n ist der Nenner des Bruches. n gibt also an, in wie viele Teile ein Ganzes zerlegt wird, m gibt an, wie viele dieser Teile vorhanden sind.

Nach dieser Definition sind auch die ganzen Zahlen rationale Zahlen, denn ganze Zahlen lassen sich stets als Bruch darstellen, wobei der Zähler ein ganzzahliges Vielfaches des Nenners ist.

Mit Einführung der rationalen Zahlen sind auch die Beschränkungen der na- türlichen Zahlen in Bezug auf die Division aufgehobene.

Jede rationale Zahl lässt sich auf der Zahlengeraden darstellen.

[...]


a Euler, 1768/69 (vollständiges Zitat siehe Titelseite)

b Eigentlich werden Zahlen nicht „entdeckt“ – vielleicht sollte man treffender sagen, sie werden „definiert“. Das sprachliche Bild wurde hier gewählt, weil die Definition neuer Zahlenbereiche durchaus mit wichtigen Entdeckungen im Bereich der Naturwissenschaften verglichen werden kann.

c Historisch betrachtet wurde die Null allerdings erst sehr viel später als die negativen Zahlen und die gebrochen rationalen Zahlen eingeführt.

d Während der Zahlenstrahl nur nach einer Seite (nämlich in Richtung der positiven Zahlen) unbegrenzt ist, ist die Zahlengerade in beide Richtungen (positiv und negativ) unbegrenzt.

e mit Ausnahme der Division durch Null

29 von 29 Seiten

Details

Titel
Komplexe Zahlen
Autor
Jahr
2001
Seiten
29
Katalognummer
V102331
Dateigröße
418 KB
Sprache
Deutsch
Anmerkungen
Gemeinsame Arbeit mit Fabian Ohler.
Schlagworte
Komplexe, Zahlen
Arbeit zitieren
Harald Schmidinger (Autor), 2001, Komplexe Zahlen, München, GRIN Verlag, https://www.grin.com/document/102331

Kommentare

  • Gast am 15.6.2001

    Tolle Facharbeit.

    Ich finde die Facharbeit echt toll!Ähm das is ja unsere ach ja stimmt!Wir haben uns gedacht tuen wir der Nachwelt ma was gutes und setzten sie ins Internet!Damit wenn ihr auch mal so einen Mist wie ne Facharbeit machen müsst, euch doch prima an dieser hier euch vorliegenden orientiern!
    Bis denne

  • Christian Fiedler am 4.7.2001

    komm mal runter.

    Hallo Harald + Fabian!

    Eure Facharbeit hätte bei mir "nur" einen dreier gegeben.
    Grund 1: Fehler bei der Ausarbeitung. Mir stach gleich das Beispiel bei der Division in arithm. Form ins Auge: Bei einer Division einer Zahl im 1. Quadranten (Gausssche Zahlenebene) durch eine Zahl im 4. Quadranten kann einfach keine Zahl im 4. Quadranten das richtige Ergebnis sein. Euer Fehler: Beim Ausmultiplizieren im Divisor.
    (-5i)*(+5i) sind nunmal -25i^2, also +25.
    Grund 2: Die wichtigste aller Formen komplexer Zahlen fehlt! - Die Exponentialform! Denn Multiplizieren, Dividieren etc. geht (finde ich) hier am einfachsten. Solltest Du später einmal z.B. Elektrotechnik studieren, wirst Du sehen, dass Du die goniometrische Form eigentlich nicht brauchst.
    Ansonsten ist es schon gut und verständlich erklärt.

  • Gast am 2.8.2001

    super.

    hey damit hast du mir echt fett weitergeholfen! scheinst ja voll das mathegenie zu sein :-)

  • Gast am 26.12.2002

    Harald hat recht.

    hi Harald!
    Echt geniale facharbeit. Kennste noch den Köhn vom Bweiler Gymnasium?
    Gruß, verena

  • Gast am 20.9.2007

    frage.

    ich habe die facharbeit gelesen und halte sie für sehr gelungen.
    allerdings habe ich eine sache nicht verstaden.
    bei der andwenungsaufgabe mit den elektomotoren berechnet ihr die stromstärke durch wurzel aus 102,41² + 64,46². warum kann man dort das j bzw j² einfach weglassen?
    müsste man nicht das j² mitbenutzen, sodass wurzel aus 102,41² + 64,46*j² herauskommt?

  • Gast am 23.10.2008

    Spitze!.

    Super!

    Mein einfaches Respekt!

Im eBook lesen
Titel: Komplexe Zahlen


Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden