Theoretische Grundlagen und Experimente zur Hydrostatik


Referat / Aufsatz (Schule), 2000

11 Seiten, Note: 1


Leseprobe


Inhaltsverzeichnis

1. Einleitung

2. Theoretische Grundlagen

3. Beschreibung der Experimente

4. Beobachtungen

5. Deutung, Auswertung und Fehleranalyse

6. Messdaten

1. Einleitung

Seit vielen Jahren fahren Schiffe mit schweren Lasten und Waren über das Meer, Seen und Flüsse. Der Bau und die Verwendung von Schiffen und Booten besitzt eine lange Tradition in der Menschheitsgeschichte. Das herkömmliche Schiff schwimmt nach dem archimedischen Prinzip aufgrund des Auftriebs auf der Wasseroberfläche. Nur Tragflügelboote und Luftkissenfahrzeuge funktionieren nach einem anderen Prinzip. Nun stellen sich folgende Kernfragen, die es zu beantworten gilt:

- Wieviel kann ein Schiff tragen?
- Welche Eintauchtiefe erhält man bei unterschiedlicher Beladung?

Im Gegensatz zu einem Schiff ist eine Tauchglocke unten offen und oben geschlossen. Auch hier wirkt das archimedische Prinzip, da diese Glocke einen Auftrieb erfährt. Es kann Wasser in die unten offene Glocke eindringen, wobei sich die Fragen stellen:

- Wie hoch steigt das Wasser im Inneren eines umgedrehten Körpers?
- Wie tief taucht der Körper in Abhängigkeit des Gesamtgewichtes ein?

2. Theoretische Grundlagen

Archimedisches Prinzip ( 220 v.Chr. )

Ein grundlegendes Gesetz der Physik ist das archimedische Prinzip. Nach ihm erfährt ein Körper, der ganz oder teilweise in eine Flüssigkeit eintaucht, eine Auftriebskraft. Diese ist der Schwerkraft entgegengesetzt und weist einen Betrag auf, der gleich der Gewichtskraft des vom Körper verdrängten Flüssigkeitsvolumens ist. Ist die Auftriebskraft größer als das Gewicht des Körpers, so schwimmt der Körper auf der Flüssigkeit (der Körper wird dann gerade so weit heraus gedrückt, dass die Gewichtskraft des verdrängten Wassers gleich der Gewichtskraft des Körpers ist). Ist der Auftrieb gleich seinem Gewicht, so schwebt er in der Flüssigkeit; ist der Auftrieb kleiner als sein Gewicht, so sinkt der Körper. Wenn man einen Körper an eine Federwaage aufhängt und ihn in eine Flüssigkeit eintaucht, so wird die Gewichtskraft des Körpers geringer. Auf alle Seiten des Körpers wirken Kräfte. Da sich die seitlichen Kräfte gegenseitig aufheben, werden für die Bestimmung des Auftriebes nur die obere und untere Kraft betrachtet, die man wie folgt berechnet:

Abbildung in dieser Leseprobe nicht enthalten

Auftrieb

Jeder teilweise oder ganz in eine Flüssigkeit eingetauchte Körper erfährt eine Auftriebskraft. Diese ist unabhängig von der Wassertiefe. Ein gutes Beispiel ist ein voller Ballon, der unter Wasser gedrückt wird. Er erfährt hierbei eine sehr starke Auftriebskraft. Der Auftrieb, den ein in eine Flüssigkeit eingetauchter Körper erfährt, ist genau so groß wie die Gewichtskraft der von dem Körper verdrängten Flüssigkeitsmenge: [Abbildung in dieser Leseprobe nicht enthalten] (siehe oben) [Abbildung in dieser Leseprobe nicht enthalten] = Dichte des Wassers

Versuch 1

Beschreibung der Experimente

Mit meinem ersten Experiment versuche ich die Fragen - wieviel kann ein Schiff laden und welche Eintauchtiefe erhält man bei unterschiedlicher Beladung - zu beantworten. Hierzu benutze ich eine Plastikschale mit der Höhe 4,3 cm, der Länge 15,3 cm, der Breite 7,9 cm, dem Gewicht 35,56 g und 23 Gewichte mit je 14,58 g. An den zwei Messstäben mit Millimetereinteilung, die ich an den zwei gegenüberliegenden langen Seiten der Schale angebracht habe, kann ich die Eintauchtiefe ablesen. Ich lege die Schale mit der geschlossenen Seite nach unten ( wie ein Schiff ) auf die Wasseroberfläche. Nach und nach lege ich immer ein Gewicht in die Schale und lese die angezeigten Messwerte ab ( siehe Tabelle 1 Körpergewicht / Eintauchtiefe ).

Skizze

Abbildung in dieser Leseprobe nicht enthalten

Versuch 2

Mit meinem zweiten Experiment versuche ich die Frage, wieviel Wasser in einen umgedrehten und oben geschlossenen Körper eindringt, zu beantworten. Hierzu benutze ich zwei 2 Meter lange Plexiglasröhren. Die größere Plexiglasröhre dient als Behälter und die kleinere, welche oben geschlossen ist, damit keine Luft entweichen kann, als Körper. Beide werden zuerst ineinander gesteckt ( siehe Skizze ) und danach wird langsam Wasser in das äußere große Plexiglasrohr eingefüllt. Ein Zollstock an der Seite der äußeren Röhre dient als Maßstab für den Wasserstand im äußeren Rohr und zugleich auch für den im inneren Rohr. Die Wasserstände im großen und kleinen Rohr werden abgelesen ( siehe Tabelle 2 ).

Nachdem das kleine Rohr im großen schwimmt, werden noch zusätzliche Gewichte an das kleine Rohr gehängt. Nach jeder Gewichtserhöhung werden die Messwerte abgelesen ( siehe Tabelle 3 ).

Skizze

Abbildung in dieser Leseprobe nicht enthalten

Beobachtung

Versuch 1

Die Schale wird auf die Wasseroberfläche gelegt und taucht aufgrund ihres Eigengewichtes zunächst bis zu einer bestimmten Tiefe ein. Mit jedem zugelegten Gewicht taucht die Schale tiefer ein. Nach Überschreitung einer bestimmten Gewichtsgrenze taucht die Schale so tief ein, dass sie mit Wasser voll läuft und sinkt.

Versuch 2

Beim Einfüllen des Wassers in die große Röhre dringt auch etwas Wasser von unten in die kleine Röhre ein. Um so mehr Wasser eingefüllt wird, desto mehr Wasser dringt ein. Ab einem bestimmten Wasserspiegel dringt kein Wasser mehr ein, aber die kleine Röhre schwimmt. Auch wenn man mehr Wasser in den Behälter gießt, bleiben die eingedrungene Wassermenge und die Eintauchtiefe der kleinen Röhre gleich.

Hängt man Gewichte an das kleine Rohr, so taucht dieses immer tiefer ein, wobei auch die von unten eindringende Wassermenge steigt. Es können so viele Gewichte zugefügt werden bis das kleine Rohr wieder auf dem Boden des Behälters aufliegt.

Deutung

Versuch 1

Beim Hinzufügen von Gewichten wird der Körper immer schwerer und taucht deshalb immer tiefer ein. Um so weiter der Körper eintaucht, desto mehr Wasser wird verdrängt. Diagramm 1 lässt erkennen, dass die Eintauchtiefe proportional zum Gewicht des Körpers ist. Aus Diagramm 1.1 erkennt man, dass das Gewicht des verdrängten Wassers gleich dem Gewicht des Körpers ist.

Man kann ganz einfach berechnen, wieviel Gewicht ein Schiff tragen kann, indem man Breite, Länge und Höhe des Schiffes miteinander multipliziert und somit das verdrängte Wasser ( beim Eintauchen bis zu der Wasserlinie ) berechnet.

Um auf die Frage - wieviel ein Schiff tragen kann - antworten zu können, sind folgende Berechnungen nötig: Kennt man die Höhe h, die Breite b, die Länge l und das Gewicht G1 eines Schiffes, so kann man die maximale Traglast des Schiffes berechnen:[Abbildung in dieser Leseprobe nicht enthalten].

Wir nehmen als Beispiel ein Schiff, das 100 m lang, 15 m hoch und 30 m breit ist. Mit der vereinfachten Annahme einer rechtwinkligen Form ergibt sich ein Volumen von 100 m ´ 15 m ´ 30 m = 45000 m3. Es kann also maximal 45000 m3 Wasser verdrängen. Dieses entspricht unter Normalbedingungen einem Gewicht von 45000 t. Das Schiff kann also ein Maximalgewicht von 45000 t haben. Wiegt das Schiff 10000 t, so könnte es 35000 t laden.

Ein Schiff kann maximal soviel Gewicht haben, wie das Gewicht des von ihm verdrängten Wassers wiegt.

Bei der zweiten Frage - welche Eintauchtiefe erhält man bei unterschiedlicher Beladung - sind folgende Berechnungen nötig: Ist das Schiff leer, so erhält man nach den Gesetzen für die Auftriebskraft eine Eintauchtiefe[Abbildung in dieser Leseprobe nicht enthalten].

Ist das Schiff beladen, so ergibt sich als Eintauchtiefe [Abbildung in dieser Leseprobe nicht enthalten].

Bezogen auf die Ladung des Schiffes ergibt sich die Änderung der Eintauchtie fe durch die Ladung selbst:[Abbildung in dieser Leseprobe nicht enthalten].

Lädt das Schiff im oberen Beispiel 20000 t, so sinkt es durch die Ladung um 6,6 m tiefer ein.

Ein Schiff taucht durch die Ladung so tief ein, wie das durch das zusätzliche Gewicht verdrängte Wasservolumen bei gleicher Breite und Länge hoch ist.

Die Eintauchtiefe ist proportional zur Gewichtserhöhung ( siehe Diagramm 1 ).

Versuch 2

Wasser wird in das große, äußere Rohr gefüllt. Der Wasserspiegel steigt und man sieht, wie Wasser von unten in das kleinere, innere Rohr gedrückt wird. Dieses wird durch den Wasserdruck bewirkt, der mit der Höhe der Wassersäule immer größer wird. Bis zu einem bestimmten Wasserstand bleibt das innere Plexiglasrohr am Boden stehen. Dieses geschieht solange, wie das Gewicht des Rohres größer ist als die Auftriebskraft ( siehe Diagramm 2 und 2.1 ). Laut Diagramm 2 verhält sich der Wasserstand im Rohr proportional zur Wassersäule im Behälter. Die konstante Steigung der Geraden findet jedoch nur bis zu einem bestimmten Grenzwert statt. Ab diesem Wert bleibt der Wasserstand im Rohr konstant, auch wenn die Wassersäule des Behälters steigt. Oberhalb dieses Grenzwertes ist die Auftriebskraft größer als die Gewichtskraft des Rohres. Wird die Auftriebskraft durch das verdrängte Wasser größer als das Gewicht des Rohres, fängt dieses an zu schwimmen. Ab jetzt steigt es mit dem nun noch eingefüllten Wasser nach oben. Die Luft im Inneren des kleinen Rohres wird nun nicht mehr weiter zusammengedrückt, da seine Eintauchtiefe bei konstantem Gewicht gleich bleibt ( siehe Tabelle 2 und Diagramm 2.1 ).

Ende der Leseprobe aus 11 Seiten

Details

Titel
Theoretische Grundlagen und Experimente zur Hydrostatik
Note
1
Autor
Jahr
2000
Seiten
11
Katalognummer
V103641
ISBN (eBook)
9783640020195
Dateigröße
451 KB
Sprache
Deutsch
Schlagworte
Hydrostatik
Arbeit zitieren
Manuel Scherge (Autor:in), 2000, Theoretische Grundlagen und Experimente zur Hydrostatik, München, GRIN Verlag, https://www.grin.com/document/103641

Kommentare

  • Noch keine Kommentare.
Blick ins Buch
Titel: Theoretische Grundlagen und Experimente zur Hydrostatik



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden