Grin logo
en de es fr
Shop
GRIN Website
Publish your texts - enjoy our full service for authors
Go to shop › Engineering - Aerospace Technology

Modeling and Parametric Performance Analysis of Field Emission Electric Propulsion

Title: Modeling and Parametric Performance Analysis of Field Emission Electric Propulsion

Master's Thesis , 2023 , 115 Pages , Grade: 3,4

Autor:in: Dinaol Gadisa (Author)

Engineering - Aerospace Technology
Excerpt & Details   Look inside the ebook
Summary Details

Space electric propulsion is required not only for orbit raising and transfer, position control, and station keeping, but also for spacecraft attitude control, advanced thermal material testing, and end-of-life de-orbiting that is much more fuel efficient than conventional chemical rockets. FEEP thruster is one type of ion propulsion system that provides a low thrust of the order of micro-Newton (µN) to milli-Newton (mN) that is primarily used for precise spacecraft attitude control with extremely high efficiency and small impulse bits based on the exhaust velocity of an ejected ion from a thruster.

This thesis report includes a mathematical and 3D CAD model of a FEEP thruster with the overarching goal of investigating and analyzing the thruster’s parametric performance. To accomplish this, a MATLAB program was used to simulate the change in thrust and exhaust velocity over time using various types of liquid metal as a propellant, assuming the fuel mass is equal to the atomic mass of the propellant, the wet mass of the spacecraft is assumed to be 4kg, and the charge of an ion is assumed to be 1.602 × 10−19 while the supplied voltage is held constant at 10 kV. Furthermore, because the porous crown emitter is the heart of the FEEP thruster, its stiffness and topology optimization were investigated.

The simulation results show that the thrust value of the FEEP thruster over time ranges from 0.213µN to 211mN during stable ion flow rate and mass expulsion of indium propellant, implying that the result is comparable to realistic FEEP parameters. Furthermore, as expected, increasing the voltage between the emitter and extractor electrodes and decreasing the mass expulsion of the propellant increased the thrust value of the FEEP thruster.

Details

Title
Modeling and Parametric Performance Analysis of Field Emission Electric Propulsion
Grade
3,4
Author
Dinaol Gadisa (Author)
Publication Year
2023
Pages
115
Catalog Number
V1335759
ISBN (PDF)
9783346838575
ISBN (Book)
9783346838582
Language
English
Tags
modeling parametric performance analysis field emission electric propulsion
Product Safety
GRIN Publishing GmbH
Quote paper
Dinaol Gadisa (Author), 2023, Modeling and Parametric Performance Analysis of Field Emission Electric Propulsion, Munich, GRIN Verlag, https://www.grin.com/document/1335759
Look inside the ebook
  • Depending on your browser, you might see this message in place of the failed image.
  • https://cdn.openpublishing.com/images/brand/1/preview_popup_advertising.jpg
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
Excerpt from  115  pages
Grin logo
  • Grin.com
  • Payment & Shipping
  • Contact
  • Privacy
  • Terms
  • Imprint