Grin logo
en de es fr
Shop
GRIN Website
Texte veröffentlichen, Rundum-Service genießen
Zur Shop-Startseite › Mathematik - Algebra

Exploring Unique Expressions of Positive Integers through Partitions and Theorems

Titel: Exploring Unique Expressions of Positive Integers through Partitions and Theorems

Forschungsarbeit , 2024 , 19 Seiten

Autor:in: Deapon Biswas (Autor:in)

Mathematik - Algebra
Leseprobe & Details   Blick ins Buch
Zusammenfassung Leseprobe Details

This paper delves into the realm of natural numbers and their expression as sums of other natural numbers, a concept known as partitions. Focusing on partitions originating from a positive integer and comprising positive integers, a systematic analysis is presented. Essential terms are defined to lay the groundwork, followed by the introduction of three key theorems and a consequential corollary. These theorems elucidate the uniqueness of expressions formed through arithmetic addition operations on such partitions, offering valuable insights into the structure and properties of positive integers. This exploration not only contributes to the theory of numbers but also holds implications for various mathematical and computational applications.

Leseprobe


Inhaltsverzeichnis (Table of Contents)

  • Introduction
  • Findings
    • Definition 2.1 Partition space
    • Definition 2.2 Partition member
    • Definition 2.3 Partition component
    • Definition 2.4 Identified partition
    • Definition 2.5 Partition event
    • Theorem 2.1 The number of partitions occurring Q components of a positive integer V denoted by P(M)
  • Application
  • Main Results at a Glance
  • Glossary

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This paper explores the concept of partitions in the theory of numbers, specifically focusing on those derived from a positive integer and composed of positive integers. The author introduces definitions and theorems to analyze and understand these partitions.

  • Definition and classification of partitions
  • Analysis of partition spaces, members, and components
  • Understanding identified partitions and partition events
  • Derivation and proof of a theorem concerning the number of partitions
  • Application of the concepts in number theory and related fields

Zusammenfassung der Kapitel (Chapter Summaries)

Introduction

The introductory chapter provides a brief overview of the topic of partitions in number theory, focusing on those derived from positive integers. It sets the stage for the subsequent chapters by introducing key concepts and outlining the paper's scope.

Findings

This chapter dives into the core definitions and concepts related to partitions. It defines crucial terms such as partition space, partition member, partition component, identified partition, and partition event, illustrated with examples to clarify their meaning and application.

Application

This chapter explores potential applications of the concepts discussed in the previous chapter. It aims to show the relevance and practical implications of the theory of partitions within various fields.

Schlüsselwörter (Keywords)

The key terms and concepts explored in this paper include: partition space, partition member, partition component, identified partition, partition event, number theory, positive integers, component assembly, identified component assembly.

Ende der Leseprobe aus 19 Seiten  - nach oben

Details

Titel
Exploring Unique Expressions of Positive Integers through Partitions and Theorems
Autor
Deapon Biswas (Autor:in)
Erscheinungsjahr
2024
Seiten
19
Katalognummer
V1453665
ISBN (PDF)
9783389007778
ISBN (Buch)
9783389007785
Sprache
Englisch
Schlagworte
exploring unique expressions positive integers partitions theorems
Produktsicherheit
GRIN Publishing GmbH
Arbeit zitieren
Deapon Biswas (Autor:in), 2024, Exploring Unique Expressions of Positive Integers through Partitions and Theorems, München, GRIN Verlag, https://www.grin.com/document/1453665
Blick ins Buch
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
Leseprobe aus  19  Seiten
Grin logo
  • Grin.com
  • Zahlung & Versand
  • Impressum
  • Datenschutz
  • AGB
  • Impressum