Versuchsprotokoll: Physikalisches Pendel


Studienarbeit, 2011

20 Seiten, Note: 1,3


Leseprobe

Inhalt

1) Einleitung:

2) Versuchbeschreibung:
Versuchsaufbau:
Materialien:
Versuchsdurchführung:
Beobachtung:

3) Messprotokoll:

4) Ergebnisse:
Schwingzeitabgleich mit Fadenpendel

5) Fehlerrechnung:

1) Einleitung:

Der Versuch M12 (Physikalisches Pendel) handelt von einem starren Körper, der an einem Punkt A, welcher nicht sein Schwerpunkt ist drehbar aufgehängt ist. Um das Schwerependel aus der Ruhelage zu drehen, muss man es um einen bestimmten Winkel drehen und einen gewissen Betrag h anheben. Sprich, man fügt dem System eine Startenergie hinzu, welche durch das Auspendeln nach und nach abnimmt.

Die Formel für das rücktreibende Drehmoment ist das Produkt der Masse m, der Gravitationskraft g dem Abstand zwischen Drehpunkt und Schwerpunkt d und sin β.

Abbildung in dieser Leseprobe nicht enthalten

Da die Funktion vom Auslenkwinkel β abhängt, lautet die Differenzialgleichung:

Abbildung in dieser Leseprobe nicht enthalten

In diesem Versuch soll die Gravitationskraft mit Hilfe eines physikalischen Pendels bestimmt werden ohne Kenntnis des Gesamtträgheitsmomentes Jges.

Dazu werden folgende Formeln benötigt:

Abbildung in dieser Leseprobe nicht enthalten

Formel nach g auflöstgelöst:

Abbildung in dieser Leseprobe nicht enthalten

Formel nach Jges umgestellt:

Abbildung in dieser Leseprobe nicht enthalten

Letztendlich ergibt sich folgende Formel für g:

Abbildung in dieser Leseprobe nicht enthalten

Zur Überprüfung der erhaltenen Werte wird ein Schwingzeitabgleich mit einem mathematischen Pendel durchführt. Da die Schwingungsdauer gleich dem mathematischen Pendel ist, kannman die Schwingzeit weglassen und braucht nur noch lred.

Formel für T0:

Abbildung in dieser Leseprobe nicht enthalten

2) Versuchbeschreibung:

Versuchsaufbau:

Abbildung in dieser Leseprobe nicht enthalten

Abb.1: Zeichnung des Versuchsaufbau

m1 = Masse der Stange

m2 = Masse der Scheibe

s1 = Abstand des Schwerpunktes der Stange von der Achse s2 = Abstand des Schwerpunkts der Scheibe von der Achse s21 , s22 = Achsabstände des Scheibenschwerpunktes (Mitte) T1 , T2 gemessene Schwingzeit für s21 , s22

lSt = Länge der Stange

Der Versuch bestand aus einem mathematischen Pendel und einem dahinter liegenden physikalischen Pendel.

Das physikalische Pendel ist ein starrer Körper, der wie Abbildung 1 zeigt um A schwingen kann.

Es gilt das Neton´sche Bewegungsgesetz:

Abbildung in dieser Leseprobe nicht enthalten

Weiter lässt sich sagen:

Da Hebelarm d = r sin[Abbildung in dieser Leseprobe nicht enthalten] ist, gilt:

Abbildung in dieser Leseprobe nicht enthalten

Es wurde eine Stange und eine höhenverstellbare Scheibe benötigt um den Achsenabstand zu variieren. Das zu Aufgabe 3 gebrauchte mathematische Pendel bestand aus einer Kugel und einem Faden der in der Länge fein und grob verstellbar ist. Das physikalische Pendel besitzt einen Anschlag der dafür sorgt, das die Auslenkung gleich bleibt und nur die Schwerpunktmitte variiert werden kann.

Materialien:

Mathematisches Pendel Physikalisches Pendel:

- Stange
- Gewischt
- Stativ

Präzisionswaage Digitale Stoppuhr Gliedermaßstab

Versuchsdurchführung:

Zu allererst werden die Stange = m1 und die Scheibe = m2 bestimmt, in dem man sie getrennt wiegt.Nun wird der Abstand des Massestückmittelpunkts von dem Schwerpunkt der Stange mit Hilfe eines Gliedermaßstab gemessen. Als nächstes wird das physikalische Pendel ausgelenkt und die Schwingungszeit für 20 Schwingungen wird mit einer digitalen Präzisionstopuhr gemessen. Zur Bestimmung der Schwingungsdauer wird dies in 3 verschiedene Abstände des Scheibenmittelpunkts zum Schwerpunkt der Stange durchgeführt. Außerdem wird die Zeitmessung jeweils dreimal wiederholt. Parallel dazu wird für jeden dieser drei Abstände die reduzierte Pendellänge des davorhängenden mathematischen Pendels ermittelt, bei der die Schwingungszeit gleich der des physikalischen Pendels ist. Dazu müssen physikalisches Pendel und mathematischen Pendels parallel miteinander schwingen. Über ein Gewinde (Grob- und Feinjustierung) kann die Fadenlänge des mathematischen Pendels so verstellen werden, dass die Schwingungen beider Pendel synchron schwingen. Die Länge des mathematischen Pendels ist dann lred .

Beobachtung:

Auffällig in diesem Versuch sind die Ergebnisse der Erdanziehungskraft die von dem Eigentlichen Wert abweichen und verdeutlichen das die Messungen sehr genau durchgeführt werden müssen um auf ein einigermaßen richtige Werte zu kommen.

Die Abweichungen sind durch die sehr ungenauen ablese verfahren der Schwerpunkts Länge und der durch Führung der Zeitnamen der Schwingdauer zu erklären, da man nicht genau sagen konnte ob die Schwingung zu Ende ist.

Dazu kam noch das die Zeit Name der Schwingungsdauer durch die Reaktionszeit sehr variiert hat.

[...]

Ende der Leseprobe aus 20 Seiten

Details

Titel
Versuchsprotokoll: Physikalisches Pendel
Hochschule
Hochschule RheinMain - Wiesbaden Rüsselsheim Geisenheim
Veranstaltung
Schwingungen und Wellen
Note
1,3
Autor
Jahr
2011
Seiten
20
Katalognummer
V181881
ISBN (eBook)
9783656053200
Dateigröße
992 KB
Sprache
Deutsch
Schlagworte
Auslenkwinkel, Trägheitsmoment, Schwerpunkt, Schwingung
Arbeit zitieren
Alexander Hartramf (Autor:in), 2011, Versuchsprotokoll: Physikalisches Pendel, München, GRIN Verlag, https://www.grin.com/document/181881

Kommentare

  • Noch keine Kommentare.
Im eBook lesen
Titel: Versuchsprotokoll: Physikalisches Pendel



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden