Grin logo
en de es fr
Shop
GRIN Website
Texte veröffentlichen, Rundum-Service genießen
Zur Shop-Startseite › Mathematik - Algebra

Satz von Tarski-Seidenberg. Folgerungen aus dem Projektionssatz

Titel: Satz von Tarski-Seidenberg. Folgerungen aus dem Projektionssatz

Bachelorarbeit , 2014 , 18 Seiten , Note: 1,0

Autor:in: Julius Konstantin (Autor:in)

Mathematik - Algebra
Leseprobe & Details   Blick ins Buch
Zusammenfassung Leseprobe Details

Die vorliegende Arbeit soll einen Beweis des Satzes von Tarski-Seidenberg mittels der Methode der Hermite Matrizen liefern. Außerdem werden Folgerungen wie Quantorenelimination in reell abgeschlossenen Körpern und das Transferprinzip vorgestellt, um abschließend die Lösung zum 17-ten Problem von Hilbert zu geben.

Leseprobe


Inhaltsverzeichnis

  • Semialgebraische Mengen
  • Projektionssatz von Tarski-Seidenberg
    • Relle Nullstellen von Polynomen
  • Folgerungen aus dem Projetionssatz
    • Angeordnete und reell abgeschlossene Körper
    • Quantorenelimination
    • Transferprinzip
    • Hilbert's 17-tes Problem

Zielsetzung und Themenschwerpunkte

Die vorliegende Arbeit liefert einen Beweis des Satzes von Tarski-Seidenberg mittels der Methode der Hermite Matrizen. Weiterhin werden Folgerungen wie Quantorenelimination in reell abgeschlossenen Körpern und das Transferprinzip vorgestellt, um schließlich die Lösung zum 17-ten Problem von Hilbert zu geben.

  • Der Satz von Tarski-Seidenberg und seine Beweisführung
  • Semialgebraische Mengen und ihre Eigenschaften
  • Die Methode der Hermite Matrizen
  • Folgerungen des Satzes: Quantorenelimination, Transferprinzip
  • Lösung des 17-ten Problems von Hilbert

Zusammenfassung der Kapitel

  • Semialgebraische Mengen: Dieses Kapitel definiert den Begriff der semialgebraischen Mengen und erläutert grundlegende Eigenschaften. Es werden boolesche Kombinationen und Normalformen von semialgebraischen Mengen behandelt.
  • Projektionssatz von Tarski-Seidenberg: Dieses Kapitel führt den Projektionssatz von Tarski-Seidenberg ein und beginnt mit dem Beweis. Die Beweisführung wird auf den nächsten Abschnitt verschoben, der sich mit reellen Nullstellen von Polynomen beschäftigt.
  • Relle Nullstellen von Polynomen: Dieses Kapitel stellt Methoden vor, die die Anzahl reeller Nullstellen von Polynomen (unter Nebenbedingungen) bestimmen. Die Beweisidee basiert auf Newtonsummen und deren Eigenschaften.

Schlüsselwörter

Satz von Tarski-Seidenberg, semialgebraische Mengen, Projektionssatz, Quantorenelimination, reell abgeschlossene Körper, Transferprinzip, Hilbert's 17-tes Problem, Hermite Matrizen, Newtonsummen.

Ende der Leseprobe aus 18 Seiten  - nach oben

Details

Titel
Satz von Tarski-Seidenberg. Folgerungen aus dem Projektionssatz
Hochschule
Universität Wien
Note
1,0
Autor
Julius Konstantin (Autor:in)
Erscheinungsjahr
2014
Seiten
18
Katalognummer
V347197
ISBN (eBook)
9783668364844
ISBN (Buch)
9783668364851
Sprache
Deutsch
Schlagworte
Tarski-Seidenberg Hermite Matrizen Quantorenelimination Hilbert's 17. Problem
Produktsicherheit
GRIN Publishing GmbH
Arbeit zitieren
Julius Konstantin (Autor:in), 2014, Satz von Tarski-Seidenberg. Folgerungen aus dem Projektionssatz, München, GRIN Verlag, https://www.grin.com/document/347197
Blick ins Buch
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
Leseprobe aus  18  Seiten
Grin logo
  • Grin.com
  • Zahlung & Versand
  • Impressum
  • Datenschutz
  • AGB
  • Impressum