Dive into the fascinating realm where supersymmetry dances with Grand Unified Theories, and discover how the subtle whispers of neutrinos might unlock the secrets of the universe. This book meticulously dissects the intricate connections between lepton masses, neutrino mixing, and the tantalizing phenomenon of flavor violation, all within the framework of supersymmetric models. Journey to the GUT scale, where the SO(10) Grand Unified Theory reigns supreme, and witness the power of the type II seesaw mechanism in shaping our understanding of neutrino mass generation. Explore the implications of rare charged lepton flavor violating (cLFV) decays, such as μ → eγ, as a window into new physics beyond the Standard Model. Uncover how precision measurements from experiments like MEG and the LHC are tightening the noose on supersymmetric particle masses and offering clues about the underlying structure of reality. Delve into the nuances of mSUGRA, NUHM, and NUGM models, and learn how the subtle differences between them can be revealed through the observation of heavy particles in future collider experiments. Contemplate the profound implications of leptonic CP violation and its potential connection to the elusive baryon asymmetry of the universe. Ascertain the latest constraints on the unitarity of the PMNS matrix, and ponder its role in unraveling the mysteries of neutrino oscillations. This book is a must-read for researchers and students alike who seek a comprehensive and insightful exploration of neutrino physics, supersymmetry, and the quest for a deeper understanding of the fundamental laws that govern our cosmos. Prepare to be challenged, enlightened, and inspired by the cutting-edge research presented within these pages, as we edge ever closer to a unified theory of everything. Unravel the complexities of neutrino physics and its deep connection to the very fabric of existence, exploring the profound implications for our understanding of the universe and the fundamental laws that govern it, examining the delicate interplay between theory and experiment that drives progress in this exciting field.
Inhaltsverzeichnis (Table of Contents)
- Introduction
- Chapter 2: Neutrino Masses and Mixings at GUT Scale
- Chapter 3: Rare cLFV Decay μ → еɣ in μ-τ Symmetric SUSY SO(10) Theories
Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)
This work explores various aspects of lepton masses, mixings, and flavor violation within supersymmetric theories, addressing open challenges in high-energy physics. It aims to contribute to model building in neutrino physics, test new physics beyond the Standard Model, and predict the masses of supersymmetric particles.
- Neutrino mass generation and mixing mechanisms.
- Lepton flavor violation (LFV) and its implications for new physics.
- Constraints on supersymmetric particle masses from LFV experiments.
- Leptonic CP violation and its connection to baryon asymmetry.
- Testing the unitarity of the PMNS matrix.
Zusammenfassung der Kapitel (Chapter Summaries)
Chapter 2: Neutrino Masses and Mixings at GUT Scale: This chapter calculates neutrino masses and mixings at the Grand Unified Theory (GUT) scale using updated running quark and lepton masses within a minimal SO(10) Grand Unified Theory framework employing the type II seesaw mechanism. The analysis uses the 126-dimensional Higgs vacuum expectation value, relating Majorana neutrino masses to both Dirac masses and charged fermion masses. The calculated neutrino oscillation parameters are compared to the latest global fit values, providing a benchmark for future work on the dynamical origin of neutrino mass and mixing. The detailed analysis provides insights into the connection between different fermion masses and their impact on neutrino oscillations.
Chapter 3: Rare cLFV Decay μ → еɣ in μ-τ Symmetric SUSY SO(10) Theories: This chapter investigates the rare charged lepton flavor violating (cLFV) decay μ → eγ within μ-τ symmetric supersymmetric SO(10) theories using the type I seesaw mechanism in mSUGRA, NUHM, and NUGM models. The analysis incorporates the measured Higgs mass from the LHC, the latest global data on the reactor mixing angle θ₁₃ for neutrinos, and the latest BR(μ → eγ) constraints from the MEG experiment. The chapter explores how different supersymmetric models predict different allowed ranges for supersymmetric particle masses, comparing mSUGRA, NUHM, and NUGM in relation to the MEG constraints. The impact of varying gaugino masses on the branching ratio is analyzed, providing insights into how the observation of heavy particles at future LHC runs could discriminate between these models and improve our understanding of physics beyond the Standard Model.
Schlüsselwörter (Keywords)
Lepton masses, neutrino mixing, flavor violation, supersymmetry, SO(10) Grand Unified Theory, seesaw mechanism, lepton flavor violation (LFV), μ → eγ decay, supersymmetric particle masses, leptonic CP violation, baryon asymmetry, PMNS matrix unitarity.
Häufig gestellte Fragen
Was behandelt dieses Dokument?
Dieses Dokument ist eine umfassende Sprachvorschau, die Titel, Inhaltsverzeichnis, Ziele und Themenschwerpunkte, Kapitelzusammenfassungen und Schlüsselwörter enthält. Es zielt darauf ab, verschiedene Aspekte von Leptonmassen, Mischungen und Flavor-Verletzung innerhalb supersymmetrischer Theorien zu untersuchen.
Was sind die Hauptziele und Themenschwerpunkte dieses Dokuments?
Die Hauptziele sind die Untersuchung der Neutrinomassenerzeugung und Mischmechanismen, Lepton-Flavor-Verletzung (LFV) und ihre Auswirkungen auf neue Physik, die Einschränkungen für supersymmetrische Teilchenmassen aus LFV-Experimenten, leptonische CP-Verletzung und ihre Verbindung zur Baryonenasymmetrie sowie die Überprüfung der Unitarität der PMNS-Matrix.
Was ist der Inhalt von Kapitel 2: Neutrino Masses and Mixings at GUT Scale?
Dieses Kapitel berechnet Neutrinomassen und Mischungen auf der GUT-Skala (Grand Unified Theory) unter Verwendung aktualisierter laufender Quark- und Leptonmassen innerhalb eines minimalen SO(10) GUT-Frameworks, das den Typ-II-Seesaw-Mechanismus verwendet. Die Analyse verwendet den 126-dimensionalen Higgs-Vakuumerwartungswert und setzt Majorana-Neutrinomassen sowohl mit Dirac-Massen als auch mit geladenen Fermionenmassen in Beziehung. Die berechneten Neutrino-Oszillationsparameter werden mit den neuesten globalen Anpassungswerten verglichen.
Was ist der Inhalt von Kapitel 3: Rare cLFV Decay μ → еɣ in μ-τ Symmetric SUSY SO(10) Theories?
Dieses Kapitel untersucht den seltenen geladenen Lepton-Flavor-verletzenden (cLFV) Zerfall μ → eγ innerhalb μ-τ-symmetrischer supersymmetrischer SO(10)-Theorien unter Verwendung des Typ-I-Seesaw-Mechanismus in mSUGRA-, NUHM- und NUGM-Modellen. Die Analyse berücksichtigt die gemessene Higgs-Masse vom LHC, die neuesten globalen Daten zum Reaktormischwinkel θ₁₃ für Neutrinos und die neuesten BR(μ → eγ)-Einschränkungen aus dem MEG-Experiment.
Welche Schlüsselwörter sind mit diesem Dokument verbunden?
Die Schlüsselwörter sind Leptonmassen, Neutrinomischung, Flavor-Verletzung, Supersymmetrie, SO(10) Grand Unified Theory, Seesaw-Mechanismus, Lepton-Flavor-Verletzung (LFV), μ → eγ Zerfall, supersymmetrische Teilchenmassen, leptonische CP-Verletzung, Baryonenasymmetrie, PMNS-Matrix-Unitarität.
Was ist die Bedeutung der μ → eγ decay Analyse in Chapter 3?
Die Analyse des μ → eγ Zerfalls ist wichtig, um zwischen verschiedenen supersymmetrischen Modellen zu unterscheiden und unser Verständnis der Physik jenseits des Standardmodells zu verbessern. Die Beobachtung schwerer Teilchen bei zukünftigen LHC-Läufen könnte zur Diskriminierung zwischen mSUGRA, NUHM und NUGM Modellen beitragen.
- Quote paper
- Dr. Gayatri Ghosh (Author), 2018, Aspects of Lepton Masses Mixings and Flavor Violation In Supersymmetric Theories, Munich, GRIN Verlag, https://www.grin.com/document/412711