Kybernetik und Theorien. Die Spieltheorie


Hausarbeit, 2019

16 Seiten, Note: 1,0

Tricy Unger (Autor)


Leseprobe

Inhaltsverzeichnis

Abbildungsverzeichnis

1. Einleitung

2. Die Spieltheorie – Definition und Begrifflichkeiten

3. Die Entwicklung der Spieltheorie

4. Konkrete Anwendungsbeispiele
4.1 Der Kalte Krieg
4.2 Der Kampf der Geschlechter
4.3 Das Hasenfußspiel
4.4 Das Markteintrittsspiel
4.5 Bau einer Gartenhütte

5. Kritische Würdigung

6. Fazit

Literaturverzeichnis

Abbildungsverzeichnis

Abbildung 1 Kampf der Geschlechter

Abbildung 2 Mögliche Ergebnisse des Hasenfußspiels

Abbildung 3 Visualisierung des Markteintrittsspiels

Abbildung 4 Spielvarianten beim Bau einer Gartenhütte

1. Einleitung

Der amerikanische Präsident Donald Trump ist besonders durch sein extrovertiertes Verhalten bekannt. Er verwendet sowohl in seinen Twitter-Beiträgen als auch bei Präsentationen oder in Interviews häufig Übertreibungen, Drohungen oder Ähnliches. Im selben Tempo entkräftet er seine Aussagen. Wodurch sein Handeln jedoch dauerhaft geprägt ist, ist die Unsicherheit. Keiner kann sagen, was als Nächstes kommt. Allerdings bietet die Mathematik und die Ökonomie mit der Spieltheorie ein Instrument, um genau dieses Verhalten zu untersuchen und mögliche Strategien hinter seinem Handeln zu erkennen. Dadurch ist eine gezielte Analyse seiner Entscheidungen, insbesondere in Konfliktsituationen, möglich. An solch einem Beispiel ist erkennbar, dass die Spieltheorie in Zeiten einer immer unberechenbarer werdenden Weltwirtschaft mit ihren unterschiedlichen Akteuren stetig an Bedeutung gewinnt (vgl. Piper, 2018). Aus diesem Grund ist die Zielsetzung des nachfolgenden Assignments die Beantwortung der Forschungsfrage „Wie hat sich die Spieltheorie entwickelt und welche fünf exemplarischen Anwendungsbeispiele gibt es?“.

Bei der schriftlichen Erarbeitung der Aufgabenstellung handelt es sich um eine literaturbasierte Analyse. Das Assignment setzt sich aus zwei Teilen zusammen. Zuerst wird die Thematik der Spieltheorie erläutert. Dabei wird geklärt, was unter dem Begriff der Spieltheorie zu verstehen ist und welche Charakteristika diese aufweist. Im Rahmen dessen wird ebenfalls auf einige der unterschiedlichen Arten eingegangen. Den Schwerpunkt dieses Abschnittes stellt die darauffolgende Entwicklung der Spieltheorie und die Vorstellung einiger wichtiger Vertreter dar.

Damit ein Übertrag in die praktische Welt möglich ist, werden im zweiten Abschnitt fünf konkrete Anwendungsbeispiele skizziert. Für das vorliegende Assignment wurden dafür der Kalte Krieg aus spieltheoretischer Sicht, der Kampf der Geschlechter, das Hasenfußspiel, das Markteintrittsspiel und der spielerische Ansatz im Zuge des Baus einer Gartenhütte gewählt.

Im Anschluss werden die gewonnenen Erkenntnisse sowohl aus dem Bereich der Entwicklung als auch der praktischen Beispiele kritisch gewürdigt. Den Abschluss der Arbeit bildet das Fazit. Im Rahmen dessen wird die Forschungsfrage zusammenfassend beantwortet und die erzielten Ergebnisse resümiert.

2. Die Spieltheorie – Definition und Begrifflichkeiten

Gemäß dem Gabler Wirtschaftslexikon ist die Spieltheorie „eine mathematische Methode, die das rationale Entscheidungsverhalten in sozialen Konfliktsituationen ableitet, in denen der Erfolg des Einzelnen nicht nur vom eigenen Handeln, sondern auch von den Aktionen anderer abhängt.“ (Gabler Wirtschaftslexikon, 2018, 1. Abschnitt). Die getroffene Entscheidung wird hierbei nicht mehr isoliert betrachtet, sondern wird von ihrer Umgebung beeinflusst. Besonders die Aktionen und Reaktionen der anderen Spieler wirken darauf ein. Dies wird auch als strategische Interdependenz bezeichnet. Somit kann die Spieltheorie als eine Erweiterung der Entscheidungstheorie gesehen werden (vgl. Grimme/Bossek, 2018, S. 249). Die Spieltheorie wird innerhalb der mikroökonomischen Theorien eingeordnet, welche ein Bestandteil der Wirtschaftstheorien sind. Diese wiederum sind einer der drei Bereiche der Volkswirtschaftslehre (vgl. Engelkamp/Sell, 2017, S. 37-40). Im Rahmen der Spieltheorie werden Situationen oder auch Interaktionen als Spiele bezeichnet. Die teilnehmenden Individuen sind dabei die Spieler. Ihnen stehen verschiedene Strategien zur Verfügung, welche sie verfolgen können. Der Begriff „Strategie“ umfasst dabei die Planung von Handlungsschritten. Die Summe der verfügbaren Strategien wird als Strategieraum bezeichnet (vgl. Scheufen, 2018, S. 128). Um ein Spiel zu analysieren sind drei Schritte notwendig. Zuerst muss eine formelle Beschreibung des Spiels erstellt werden. Im Anschluss können Hypothesen, welche sich auf die Handlungsweisen der Spieler beziehen, getroffen werden. Zum Schluss wird das vorher definierte Lösungskonzept angewandt (vgl. Kolmar, 2017, S. 287). Ein Spiel besteht aus den folgenden Komponenten: die Spielern, definierte Regeln, verfügbare Informationen, verschiedene Handlungsoptionen, die Reihenfolge der Entscheidungen, die Auszahlungen (Ergebnisse der Handlungen) und der Nutzen, welcher jeder Spieler dem Ergebnis zuteilt (vgl. Peyrolón, 2019, S. 4-5). Trotz dieser gemeinsamen Elemente gibt es verschiedene Spielarten. In dieser Arbeit werden nur einige exemplarisch vorgestellt. Nullsummenspiele sind dadurch charakterisiert, dass die Summe der Gewinne und Verluste aller beteiligten Spieler immer gleich null ist. Beispielhaft ist das Spiel Schach zu nennen. Im Gegensatz dazu variiert diese Summe bei Nichtnullsummenspielen (vgl. Kottmann/Smit, 2019, S. 11). Ebenfalls nennenswert sind die kooperativen Spiele, wobei gemeinsam getroffene Vereinbarungen zwischen den Spielern mithilfe von Sanktionen oder anderen Mechanismen eingefordert werden können. Im Gegenteil dazu gibt es bei nicht-kooperativen Spielen keine Sicherheit, dass die Absprachen eingehalten werden (vgl. Welge et. al, 2017, S. 68-69).

3. Die Entwicklung der Spieltheorie

Das dritte Kapitel stellt einen der Schwerpunkte dieses Assignment dar. Im Rahmen dessen werden die historische Entwicklung der Spieltheorie skizziert und besonders nennenswerte Vertreter vorgestellt.

Die Ursprünge der Spieltheorie liegen bereits im frühen 18. Jahrhundert. Damals fokussierte sich diese jedoch lediglich auf die Analyse von Gesellschaftsspielen aus mathematischer Sicht, wie es beispielsweise Francis Waldegrave in Bezug auf das Kartenspiel „Le Her“ tat. Im 19. Jahrhundert erweiterte sich das Blickfeld, indem auch ökonomische Probleme und damit verbunden die Interaktion zwischen Wirtschaftssubjekten unter spieltheoretischen Aspekten betrachtet wurden. Essentielle Fortschritte im Bereich der Spieltheorie fanden ab Beginn des 20. Jahrhunderts statt. Eine wesentliche Rolle nehmen dabei die Gesellschaftsspiele ein. Zum einen ist hier Ernst Zermelo zu erwähnen. Er wies schon 1913 mithilfe der Rückwärtsinduktion am Beispiel des Spiels Schach nach, dass es ein eindeutiges Minimax-Gleichgewicht bei Nullsummenspielen von zwei Personen gibt, wenn sowohl perfekte Informationen als auch eine endliche Anzahl an reinen Strategien vorliegen (vgl. Söllner, 2015, S. 260-261). Zur besseren Strukturierung der Entwicklung der Spieltheorie soll diese in der vorliegenden Arbeit in drei Phasen untergliedert werden (vgl. Berninghaus/Ehrhart/Güth, 2010, S. 3-5). Ein wesentlicher Vertreter der ersten Phase ist Johann von Neumann. Durch seine Forschung im Bereich der Spieltheorie konnte er bereits 1928 die Resultate von Zermelo generalisieren und das Minimaxtheorem beweisen. Dieses besagt, „[d]as Maximum der Minima der Auszahlungen des einen Spielers ist (bei rationalem Verhalten beider Spieler) gleich dem Minimum der Maxima dieser Auszahlungen bezogen auf den anderen Spieler.“ (Holler et al., 2019, S. 405). Auf Basis dieser Erkenntnisse veröffentlichte er gemeinsam mit Oskar Morgenstern 1944 das Werk „Theory of Games and Economic Behavior“, welches bis heute als eines der wichtigsten Grundsteine für die Spieltheorie gilt. Darin liegt der Schwerpunkt auf der Analyse von strategischen Interaktionen (vgl. Weimann/Brosig-Koch, 2019, S. 12). Beide Autoren fokussieren sich in ihrem Buch auf Nullsummenspiele sowohl von zwei als auch von mehreren Personen. Durch die Analyse von Koalitionen und Verhandlungsszenarien begründen sie zudem die kooperative Spieltheorie. Zudem kann die Spieltheorie ab diesem Zeitpunkt als eigenständige Disziplin gesehen werden. Eine weitere Besonderheit des Buches ist, dass spieltheoretische Ansätze systematisch auf ökonomische Probleme angewandt werden. Allerdings wurden die Konzepte zur Lösung für Nichtnullsummenspiele vernachlässigt. Da diese jedoch vermehrt im ökonomischen Bereich auftreten, konnten die hohen Erwartungen anfangs nicht erfüllt werden. Dieser Nachteil wurde jedoch bereits wenige Jahre später durch die Veröffentlichungen des strategischen Gleichgewichts für die nichtkooperative Spieltheorie von John Nash behoben. Dieses ist auch als Nash-Gleichgewicht bekannt. Es besagt, dass jedes endliche Spiel mindestens ein Gleichgewicht enthält, bei dem keiner der Spieler seinen Nutzen durch das Abweichen seiner Strategie steigern kann, wenn alle anderen ebenfalls ihre Gleichgewichtsstrategie weiterverfolgen. Das Nash-Gleichgewicht hat eine sehr breite Anwendbarkeit, da es sowohl bei Spielen mit zwei oder mehr Personen, vollständigen und unvollständigen Informationen sowie bei Nullsummen- und Nichtnullsummenspielen existiert. Nachteilig ist jedoch, dass es häufig mehrere dieser Gleichgewichte gibt. Als Auftakt der zweiten Entwicklungsphase kann die Verfeinerung des Nash-Gleichgewichts 1965 durch Reinhard Selten gesehen werden, indem er die Begrifflichkeit der Teilspielperfektheit erschuf. Ein Spiel wird dabei in einzelne Teilspiele zerlegt, welche im Nachgang analysiert werden. Diese werden dann differenziert, ob die Züge der Spieler in jedem einzelnen Schritt rational sind oder nicht. Als teilspielperfekt gilt eine Strategie, wenn sie vollkommen rational ist und Gegebenheiten wie Versprechungen oder Drohungen vermieden werden (vgl. Söllner, 2015, S. 261-264). Reinhard Selten kann allerdings in einem weiteren Zusammenhang genannt werden. In den 60er und 70er Jahren widmete er sich gemeinsam mit Heinz Sauermann der experimentellen Spieltheorie, indem sie vermehrt Untersuchungen zu Oligopolmärkten durchführten. In diesem Bereich leisteten sie umfangreiche Pionierarbeit (vgl. Weimann/Brosig-Koch, 2019, S. 14). Die dritte und bis heute andauernde Phase der Spieltheorie begann in den 70er Jahren. In dieser Zeit gewann die Spieltheorie immer mehr an Bekanntheit und Ansehen. Als Folge dessen entwickelte sie sich auch außerhalb der bisherigen ökonomischen und gesellschaftsspielerischen Pfade. Einen wesentlichen Beitrag dazu leistete John Maynard Smith, der die spieltheoretischen Inhalte erstmals auf evolutionsbiologische Fragen anwendete. Dadurch entwickelte sich die evolutorische Spieltheorie. Im Rahmen dessen wurden Phänomene wie beispielsweise Revierkämpfe oder auch die Partnersuche von Tierpopulationen betrachtet. Die Besonderheit liegt darin, dass nicht mehr der rational handelnde Mensch der Forschungsgegenstand ist, sondern die Handlungen maßgeblich von Instinkten geleitet werden (vgl. Berninghaus/Ehrhart/Güth, 2010, S. 6). Eine der neusten Weiterentwicklung der Spieltheorie stellen Lernmodelle dar, welche den „Lernprozess als Resultat konsequent verfolgter Nutzenmaximierungsbestrebungen der Akteure in einem wiederholten Spiel mit sukzessiven Erwartungsanpassungsprozessen konzeptionalisiert, die sich schließlich in einer verbesserten Prognostizierbarkeit des Verhaltens der Mitspieler widerspiegeln.“ (Welge et. al, 2017, S. 65).

4. Konkrete Anwendungsbeispiele

Mithilfe dieses Kapitels sollen die theoretischen Erkenntnisse hinsichtlich der Spieltheorie an fünf Praxisbeispielen veranschaulicht werden. Das Gefangenendilemma ist innerhalb der Spieltheorie eines der bekanntesten und meist zitierten Anwendungsfälle, da es Verhandlungs- oder reale Konfliktsituationen ideal darstellt. In diesem Assignment wird jedoch bewusst ein Ausblick in andere Beispiele gegeben (vgl. Peyrolón, 2019, S. 26).

4.1 Der Kalte Krieg

Die Zeit des Kalten Krieges war stark von nuklearer Aufrüstung in der ehemaligen Sowjetunion und den Vereinigten Staaten von Amerika geprägt. Trotz dieser Situation kam es allerdings nicht zu einem dritten Weltkrieg. Ein wesentlicher Faktor dafür war das spieltheoretische Denken und Handeln (vgl. von Hirschhausen, 2015, S. 552).

1946 wurde die RAND-Corporation in Santa Monica gegründet und größtenteils von der Amerikanischen Air Force finanziert. Die amerikanische Regierung wurde in dieser Zeit von dieser Institution beraten, in welcher ebenfalls Spieltheoretiker wie John von Neumann, Merrill Flood oder John Nash aktiv waren. Das Ziel der Regierung war es die Pattsituation zwischen den beiden Weltmächten besser zu verstehen, Handlungsprämissen abzuleiten und sich somit einen Vorteil verschaffen zu können (vgl. Holler et al., 2019, S. 408-409). Es handelt sich hierbei also um ein Spiel mit zwei Spielern. Beide vertraten die Ansicht, dass bei einem Angriff des Gegners ein verheerender Gegenschlag erfolgen würde. Bekannt wurde diese Strategie auch unter dem Begriff Mutually Assured Destruction (MAD). Damit die amerikanische Glaubwürdigkeit gewährleistet werden konnte, entwickelt die RAND vier entsprechende Strategien. Die Erste bestand darin den Präsidenten, durch Veröffentlichungen von der CIA, möglichst unglaubwürdig erscheinen zu lassen. Zudem sollte die Implementierung von nuklearen Überkapazitäten an unterschiedlichen Orten die Möglichkeit, einen Gegenangriff aufzuhalten, verstärken. Eine dritte Strategie sollte gewährleisten, dass genügend Kapazitäten für einen Gegenschlag verfügbar waren. Überdies hinaus bestand eine Strategie in der Herstellung sogenannter Doomsday Machines. Diese führen im Falle eines Angriffes automatisch ohne menschliches Zutun einen Gegenangriff durch. Sowohl in der ersten und vierten Strategie entwickelte die Sowjetunion ähnliche Ansätze und verbesserte diese sogar zum Teil. Beispielhaft ist hier die Doomsday Maschine „Perimeter“. Basierend auf Daten bezüglich der Radioaktivität, der Seismik sowie der Licht- und Druckverhältnisse konnte die Maschine kleinste Hinweise auf einen nuklearen Anschlag identifizieren und eine entsprechende Gegenreaktion auslösen (vgl. Kolmar, 2017, S. 304-305).

4.2 Der Kampf der Geschlechter

Das zweite Beispiel in diesem Assignment ist der Kampf der Geschlechter. Dieses veranschaulicht besonders die Thematik des Nash-Gleichgewichtes. Die Situation, in der das Spiel stattfindet, ist jedem bekannt. Es handelt sich dabei um zwei Personen, welche sich zu einem ersten Date verabreden wollen. Das primäre Ziel ist gemeinsam Zeit zu verbringen. Allerdings haben Heike und Mario, wie die beiden Protagonisten beispielhaft genannt werden, nicht darüber gesprochen, inwiefern dies stattfinden soll. Heike würde gerne mit Mario eine Weinbar besuchen und dort ein Jazz Konzert ansehen. Mario hingegen schwebt etwas Aktiveres vor. Er bevorzugt eine gemeinsame Fahrradtour. Dadurch ergeben sich für beide jeweils zwei Handlungsoptionen, welche in Abbildung eins dargestellt sind. Sie können entweder das eigene Interesse verfolgen oder die Aktivität des anderen begleiten (vgl. Peyrolón, 2019, S. 16).

Abbildung 1 Kampf der Geschlechter

Quelle: eigene Darstellung (vgl. Scheufen, 2018, S. 138)

Die Herausforderung der Entscheidung liegt darin, dass Heike und Mario nicht miteinander über die Auswahl kommunizieren können. Allerdings kennen sie die eigene Präferenz und die des anderen. Wenn jeder der beiden das tun würde, was er gerne möchte, würden sie keine gemeinsame Zeit miteinander verbringen. Somit stellt dies keine nützliche Option dar, da für beide eine Auszahlung in Höhe von null damit verbunden ist. Gehen die beiden gemeinsam zu dem Jazzkonzert in der Weinbar erhält Heike eine höhere Auszahlung im Wert von vier Punkten, da es sich hierbei um ihre Präferenz handelt. Marios Auszahlung hingegen ist niedriger (zwei Punkte). Unternehmen die beiden allerdings eine gemeinsame Fahrradtour ist die Situation umgedreht. Es ist zu beachten, dass keiner von beiden null Punkte erhält, da die gemeinsame Unternehmung und somit das Primärziel in beiden Fällen erreicht wird. Daher gibt es in diesem Spiel zwei Nash-Gleichgewichte, da keiner von beiden einen Anreiz hat einseitig von der Strategie abzuweichen (vgl. Scheufen, 2018, S. 137-138).

[...]

Ende der Leseprobe aus 16 Seiten

Details

Titel
Kybernetik und Theorien. Die Spieltheorie
Hochschule
AKAD University, ehem. AKAD Fachhochschule Stuttgart
Note
1,0
Autor
Jahr
2019
Seiten
16
Katalognummer
V511931
ISBN (eBook)
9783346088826
ISBN (Buch)
9783346088833
Sprache
Deutsch
Schlagworte
Spieltheorie, kybernetik, gefangenendilemma, entscheidungstheorie, kampfdergeschlechter, markteintrittsspiel
Arbeit zitieren
Tricy Unger (Autor), 2019, Kybernetik und Theorien. Die Spieltheorie, München, GRIN Verlag, https://www.grin.com/document/511931

Kommentare

  • Noch keine Kommentare.
Im eBook lesen
Titel: Kybernetik und Theorien. Die Spieltheorie



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden