Imagine a world where vehicle suspension design is no longer constrained by traditional methods, but instead, is driven by the power of numerical computation and innovative material science. This book unveils a groundbreaking synthesis workflow for designing compliant mechanism suspensions, offering a paradigm shift in how engineers approach vehicle dynamics and structural integrity. Through the lens of a detailed case study – the design of a high-performance bicycle fork – the author meticulously demonstrates the power and elegance of this streamlined process. Journey through the intricacies of topology optimization, shape refinement, and finite element analysis, as the book illuminates the path from initial concept to a fully realized, monolithic suspension design. Discover how to leverage composite materials to achieve unparalleled performance and weight reduction, while simultaneously enhancing ride comfort and responsiveness. Whether you're a seasoned engineer seeking to revolutionize your design process or a student eager to explore the cutting edge of vehicle engineering, this book provides the knowledge and tools necessary to unlock the potential of compliant mechanisms. Explore the theoretical underpinnings of suspension systems, structural design optimization, and composite materials, gaining a deep understanding of the principles that drive this innovative approach. Witness the practical application of multi-body simulation and prototyping, as the bicycle fork design evolves from a virtual model to a tangible reality. This is more than just a design guide; it's a roadmap to the future of vehicle suspension, where efficiency, performance, and sustainability converge to create a new era of mobility. Dive into the world of numerical synthesis and discover how to create suspension systems that are not only lighter and stronger but also more responsive and adaptable to the demands of modern transportation. Unlock the secrets of compliant mechanisms and transform the way you design for motion.
Table of Contents
- 1 Motivation
- 2 Objective and Organization of the Research
- 3 Limitations of the Research
- 4 State of the Art
- 4.1 Composite Leaf Springs
- 4.2 Compliant Mechanisms
- 4.3 Bicycle Suspension
- 5 Theoretical Background
- 5.1 Suspension Systems
- 5.2 Structural Design Optimization Methods
- 5.3 Leaf Springs
- 5.4 Compliant Mechanisms
- 5.5 Composites as leaf spring material
- 6 Synthesis Approach
- 6.1 Workflow
- 6.2 Modeling contradicting Formulations as viable Design Responses
- 7 A Bicycle Fork as a Case Example
- 7.1 Design Space
- 7.2 Benchmarking
- 7.3 Load Cases
- 8 Synthesis of the Compliant System Bicycle Fork
- 8.1 Finite Element Model
- 8.2 Topology Optimization
- 8.3 Selecting and Reengineering relevant Topologies
- 8.4 Sandwich Design
- 8.5 Shape Optimization
- 8.6 CAD Model Finishing
- 8.7 FE Model Reduction
- 8.8 Multi Body Simulation
- 8.9 Prototyping
Objectives and Key Themes
This thesis investigates the application of numerical iteration software in the design of compliant mechanism suspensions for vehicle systems. The primary objective is to develop a streamlined synthesis workflow, illustrated through the design of a bicycle fork, enabling engineers to quickly generate initial design concepts.
- Numerical synthesis of compliant mechanisms
- Application of the workflow to bicycle fork design
- Use of topology and shape optimization techniques
- Development of a monolithic suspension design
- Evaluation of the design through finite element analysis and multi-body simulation
Chapter Summaries
1 Motivation: This chapter likely introduces the background and context for the research, highlighting the need for efficient design methods for compliant mechanism suspensions in vehicle systems. It sets the stage for the thesis by outlining the challenges in traditional design approaches and positioning the proposed numerical synthesis workflow as a potential solution. The motivation may discuss the limitations of existing methods and the advantages of a more streamlined, computationally driven design process.
4 State of the Art: This chapter reviews existing literature on composite leaf springs, compliant mechanisms, and bicycle suspensions. It provides a comprehensive overview of current design practices and technologies, identifying gaps and opportunities for improvement. The discussion likely includes various suspension designs, materials, and manufacturing techniques, establishing a foundation for the proposed research and its novelty.
5 Theoretical Background: This chapter establishes the theoretical foundations underlying the research. It delves into the principles of suspension systems, structural design optimization methods, leaf springs, compliant mechanisms, and composite materials. This section likely explores relevant mathematical models, design principles, and analysis techniques essential for understanding and implementing the numerical synthesis workflow. Specific examples and detailed explanations of the concepts are likely included to provide context and clarity.
6 Synthesis Approach: This chapter presents the core methodology of the thesis – the proposed synthesis workflow. It describes the steps involved in designing compliant mechanism suspensions using numerical iteration software. This likely entails a detailed explanation of the workflow's stages, including modeling, optimization, and analysis techniques. A flowchart or visual representation of the process may be included. The chapter likely justifies the chosen steps and explains how they contribute to efficient and effective design.
7 A Bicycle Fork as a Case Example: This chapter applies the synthesis workflow to a real-world example: designing a bicycle fork. It outlines the design space, benchmarks existing designs, and defines the relevant load cases. This likely involves a detailed description of the bicycle fork's geometry, material properties, and operating conditions. The selection of the bicycle fork as a case example and the rationale behind it should be clearly explained.
8 Synthesis of the Compliant System Bicycle Fork: This chapter presents the results of applying the workflow to the bicycle fork design. It details the finite element modeling, topology optimization, shape optimization, sandwich design considerations, and multi-body simulation. The chapter likely demonstrates the step-by-step application of the proposed methodology, highlighting the iterative nature of the process and the decision-making involved at each stage. Detailed results of each analysis step are likely presented, along with a discussion of the trade-offs and design choices made.
Keywords
Compliant mechanisms, suspension systems, numerical synthesis, topology optimization, shape optimization, finite element analysis, multi-body simulation, bicycle fork, composite materials, design workflow.
Häufig gestellte Fragen
Was ist der Hauptinhalt dieses Dokuments?
Dieses Dokument ist eine Sprachvorschau für ein akademisches Werk, das sich mit der numerischen Synthese nachgiebiger Mechanismen zur Anwendung in Fahrzeugfederungen befasst. Es enthält ein Inhaltsverzeichnis, eine Beschreibung der Ziele und Schwerpunkte, Kapitelzusammenfassungen und Schlüsselwörter.
Was sind die Hauptthemen, die in dieser Arbeit behandelt werden?
Die Hauptthemen sind: Numerische Synthese nachgiebiger Mechanismen, Anwendung des Workflows auf die Konstruktion einer Fahrradgabel, Einsatz von Topologie- und Formoptimierungstechniken, Entwicklung einer monolithischen Federungskonstruktion und Bewertung der Konstruktion durch Finite-Elemente-Analyse und Mehrkörpersimulation.
Welche Kapitel werden in dieser Arbeit zusammengefasst?
Die Kapitel, deren Zusammenfassungen enthalten sind, sind: Motivation, Stand der Technik, Theoretischer Hintergrund, Syntheseansatz, Eine Fahrradgabel als Fallbeispiel und Synthese der nachgiebigen Systemfahrradgabel.
Was beinhaltet das Kapitel "Motivation"?
Das Kapitel "Motivation" führt wahrscheinlich in den Hintergrund und Kontext der Forschung ein und betont die Notwendigkeit effizienter Konstruktionsmethoden für nachgiebige Mechanismen in Fahrzeugsystemen. Es legt den Grundstein für die These, indem es die Herausforderungen bei traditionellen Konstruktionsansätzen umreißt und den vorgeschlagenen numerischen Synthese-Workflow als mögliche Lösung positioniert.
Was wird im Kapitel "Stand der Technik" behandelt?
Das Kapitel "Stand der Technik" gibt einen Überblick über die existierende Literatur zu Blattfedern aus Verbundwerkstoffen, nachgiebigen Mechanismen und Fahrradfederungen. Es bietet eine umfassende Übersicht über aktuelle Designpraktiken und Technologien und identifiziert Lücken und Verbesserungsmöglichkeiten.
Was ist der Fokus des Kapitels "Theoretischer Hintergrund"?
Das Kapitel "Theoretischer Hintergrund" behandelt die theoretischen Grundlagen der Forschung. Es befasst sich mit den Prinzipien von Federungssystemen, Methoden der Strukturoptimierung, Blattfedern, nachgiebigen Mechanismen und Verbundwerkstoffen.
Was beinhaltet das Kapitel "Syntheseansatz"?
Das Kapitel "Syntheseansatz" beschreibt die Kernmethodik der These – den vorgeschlagenen Synthese-Workflow. Es beschreibt die Schritte, die bei der Konstruktion nachgiebiger Mechanismen mit numerischer Iterationssoftware erforderlich sind. Dies umfasst wahrscheinlich eine detaillierte Erläuterung der Workflow-Phasen, einschließlich Modellierungs-, Optimierungs- und Analysetechniken.
Was ist das "Fahrradgabel"-Beispiel?
Das Kapitel "Eine Fahrradgabel als Fallbeispiel" wendet den Synthese-Workflow auf ein reales Beispiel an: die Konstruktion einer Fahrradgabel. Es umreißt den Konstruktionsraum, vergleicht existierende Designs und definiert die relevanten Lastfälle.
Was sind die wichtigsten Schritte im Kapitel "Synthese der nachgiebigen Systemfahrradgabel"?
Das Kapitel "Synthese der nachgiebigen Systemfahrradgabel" präsentiert die Ergebnisse der Anwendung des Workflows auf die Fahrradgabelkonstruktion. Es beschreibt die Finite-Elemente-Modellierung, die Topologieoptimierung, die Formoptimierung, die Sandwich-Design-Überlegungen und die Mehrkörpersimulation.
Welche Schlüsselwörter sind mit dieser Arbeit verbunden?
Die Schlüsselwörter sind: Nachgiebige Mechanismen, Federungssysteme, numerische Synthese, Topologieoptimierung, Formoptimierung, Finite-Elemente-Analyse, Mehrkörpersimulation, Fahrradgabel, Verbundwerkstoffe, Design-Workflow.
- Quote paper
- Thorsten Schrader (Author), 2015, Designing Compliant Mechanism Suspensions. Numerical Synthesis of a Monolithic Bicycle Fork, Munich, GRIN Verlag, https://www.grin.com/document/583618