Die Substruktur der Leptonen/Quarksfamilien


Wissenschaftlicher Aufsatz, 2007

33 Seiten


Leseprobe


Inhaltsverzeichnis

1. Einleitung

2. Farbladung

3. Die Leptonen/Quarksfamilien

4. Die Nanos

5. Substruktur der Leptonen/Quarksfamilien

6. Fazit

7. Ausblick

Literaturverzeichnis

Anhang - Berechnung der Massenverhältnisse der Leptonen -

1. Einleitung

Das Spektrum der Leptonen e (Elektron) , m (Müon), t (Tau) mit ihren zugehörigen Neutrinos h e, h m, h t und der Quarks u , d, s, c, b, t umfasst bisher 12 Teilchen.

Die Quarks tragen die Farbladung r (rot), g (grün) und b (blau), kommen also je 3-mal vor. Damit erhöht sich die Teilchenzahl auf 24.

Hinzu kommen nun aber auch noch die jeweiligen Antiteilchen.

Zurzeit kennen wir insgesamt 48 Spektrumsmitglieder.

Diese werden bekanntlich in drei Leptonen/Quarksfamilien unterteilt.

Es gibt bis heute keine theoretische Einschränkung auf 48 Teilchen in nur 3 Familien.

Auch die identische Wiederholung der Leptonen/Quarksfamilien ist derzeit noch nicht begründet.

Dieser Aufsatz stellt ein Modell der Substruktur obiger Teilchen vor, welches die mögliche Teilchenanzahl auf 48 begrenzt und deren Auftreten in nur 3 Familien begründet.

2. Farbladung

Bekanntlich wurde zur Rettung des Pauli-Prinzips die Farbladung eingeführt. Dabei wurde den Quarks Farbe und den Antiquarks die entsprechende Antifarbe zugeordnet.

Nun soll,

bei den Baryonen die Farbmischung von 3 Quarks (r, g, b) gleich W (weiß),

bei den Antibaryonen die Farbmischung von 3 Antiquarks (` r, ` g, ` b) auch W (weiß),

bei den Mesonen die Farbmischung der Quarks/Antiquarks-Paare (r, ` r) sowie (g, ` g) oder (b, ` b) ebenfalls W (weiß) ergeben.

Alle Farbmischungen das gleiche Resultat? Das scheint doch recht verwunderlich.

Das folgende Modell eines “Farbraumes” macht einerseits Unterschiede in der Farbmischung bei Baryonen und Antibaryonen sowie bei Mesonen und

ordnet anderseits den Farben Quantenzahlen zu.
Wir denken uns einen “Farbraum” mit den Koordinaten x, y und z.

Dabei seien x und y imaginäre Achsen und z eine reelle Achse.

An die reelle Achse z schreiben wir die Baryonzahl B.

Nun denken wir uns eine Kugel mit dem Radius 1. Der Kugelmittelpunkt liegt im Koordinatenursprung. Diese Kugel sei der “Farbraum”.

Auf der Kugeloberfläche sei (bei zurzeit noch fehlender physikalischer Interpretation der Koordinaten x, y noch wahlfrei und untereinander austauschbar) bei

Abbildung in dieser Leseprobe nicht enthalten

Setzen wir nun vorläufig

W = B (1)

können wir die Farbkugel [1] von Philipp Otto Runge als “Farbraum” interpretieren.

Wir erhalten folgende komplexe Farbquantenzahlen:

Abbildung in dieser Leseprobe nicht enthalten

mit der reellen Komponente W = -1/3
Die Farbmischung der 3 Quarks der Baryonen (r, g, b) wird nunmehr:

W = 1 (weiß).

Die Farbmischung der 3 Antiquarks der Antibaryonen (` r, ` g, ` b) wird:

W = -1 (antiweiß / schwarz)

Die Farbmischung der Quarks/Antiquarks-Paare der Mesonen (r, ` r) sowie (g, ` g) oder (b, ` b) wird:

W = 0 (grau)

Wir stellen fest:

- alle reelle “freie” Teilchen finden wir auf der Polachse der Farbkugel.

Die Baryonen am Nordpol (weiß), die Antibaryonen am Südpol (schwarz)

Die Mesonen im Kugelmittelpunkt (grau).

- imaginäre “unfreie” Teilchen wie die Quarks finden wir auf der Kugeloberfläche.

3. Die Leptonen/Quarksfamilien

Die Leptonen und Quarks werden bekanntlich wie folgt in 3 Familien eingeteilt.

1. Familie 2. Familie 3. Familie

e+ Positron µ + Antimüon t + Antitau

u Quark c Quark t Quark

Abbildung in dieser Leseprobe nicht enthalten

e- Elektron µ - Müon t - Tau
Da sich die Quantenzahlen in allen Familien identisch wiederholen, betrachten wir im Weiteren nur die 1.Familie mit den zugehörigen Quantenzahlen.

1. Familie Q (Elementarladung) B (Baryon) L (Lepton)

Abbildung in dieser Leseprobe nicht enthalten

e- Elektron -1 0 1

Es fällt sofort auf, dass es hier keine Quantenzahl gibt, die auf eine Zusammengehörigkeit der “Familienmitglieder” hinweist.

Im Gegenteil, Leptonen haben keine Baryonzahl und die Quarks keine Leptonenzahl. Leptonen sind reelle “freie” Teilchen, Quarks sind das nicht.

Alle “Familienmitglieder” sind zwar Fermionen mit dem Spin ½, das sind die Baryonen aber auch.

Was allerdings eine gemeinsame Eigenschaft aller “Familienmitglieder” ist, sie strukturieren die Materie.

Folgender Zusammenhang soll diese Gemeinsamkeit aller “Familienmitglieder” kennzeichnen:

T = 2 Q - B + L (2)

Die hier neu eingeführte additive Quantenzahl T bezeichnen wir nunmehr als “Strukturquantenzahl”.

Betrachten wir noch einmal die 1. Familie mit der neuen Quantenzahl T.

1. Familie Q B L T

Abbildung in dieser Leseprobe nicht enthalten

e- Elektron -1 0 1 -1

Hierbei fällt auf, dass T nicht symmetrisch zu den Teilchen/Antiteilchen ist.

Später wird uns dieser Umstand zu einer überraschenden Erkenntnis führen.

In (2) T = 2 Q - B + L anders geschrieben T = 2 Q - (B - L)

gilt es noch den Klammerausdruck (B - L) zu interpretieren.

Wenn wir den Leptonen/Quarksfamilien eine Substruktur unterstellen, ist es geradezu logisch, den Leptonen als reelle “freie” Teilchen auch eine Farbmischung W zuzuordnen. Hierzu ist (1) allerdings zu erweitern.

Wir definieren neu und ersetzen (1) durch:

W = B - L (3)

Damit wird (2) auch:

T = 2 Q - W (4)

[...]

Ende der Leseprobe aus 33 Seiten

Details

Titel
Die Substruktur der Leptonen/Quarksfamilien
Autor
Jahr
2007
Seiten
33
Katalognummer
V70382
ISBN (eBook)
9783638615716
ISBN (Buch)
9783638677943
Dateigröße
528 KB
Sprache
Deutsch
Anmerkungen
Theorieentwurf
Schlagworte
Substruktur, Leptonen/Quarksfamilien
Arbeit zitieren
Dipl.-Ing.(FH) Wolfgang Kloppe (Autor:in), 2007, Die Substruktur der Leptonen/Quarksfamilien, München, GRIN Verlag, https://www.grin.com/document/70382

Kommentare

  • Noch keine Kommentare.
Blick ins Buch
Titel: Die Substruktur der Leptonen/Quarksfamilien



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden