Franck-Hertz-Versuch


Referat / Aufsatz (Schule), 2001

11 Seiten


Gratis online lesen

Inhaltsverzeichnis

0. Aufgabenstellung

1. Grundlagen des Versuches

2. Versuchsdurchführung

3. Auswertung

4. Fehlerbetrachtung

5. Anhang

0.Aufgabenstellung

1. Durch ein Elektronenstoß-Experiment nach J. FRANCK und G. HERTZ ist nachzuweisen, dass Quecksilber Atome nur diskrete Energiebeträge absorbieren können!
2. Aus dem I-U-Diagramm ist die Energiedifferenz der beiden beteiligten Elektronen-Energiezustände sowie die Wellenlänge des entsprechenden Energieübergangs zu berechen und mit den Werten der Spektraltabelle zu vergleichen.
3. Die Temperaturabhängigkeit der IS-UA-Kennlinien und deren Abhängigkeit von der Gegenspannung ist zu diskutieren.

1.Grundlagen des Versuchs

Durch diesen Versuch kann nachgewiesen werden, dass Elektronen eines Atoms (hier HgAtom) sich nur auf diskreten Energieniveaus aufhalten.

In einer mit Quecksilberdampf gefüllten Triode (FRANCK-HERTZ-Röhre) werden die von der Glühkatode emittierten Elektronen durch eine positive Spannung UA zu einem Gitter hin beschleunigt. Nach dem Durchfliegen des Gitters werden die Elektronen durch eine kleine Gegenspannung US, welche zwischen Gitter und der Anode A liegt, wieder abgebremst. Diese beschleunigten Elektronen werden durch elastische Stöße an den Quecksilber-Atomen zerstreut. Ab einer bestimmten Spannung UA erreichen die Elektronen soviel kinetische Energie, um durch einen unelastischen Stoß das Quecksilber-Atom (Hg) anzuregen. Da es sich um elastische und unelastische Stöße handelt, ist dieser Versuch ein Elektronenstoß- Experiment (siehe Aufgabenstellung 1.).

Bei der Anregung der Quecksilberatome verlieren die Elektronen fast ihre gesamte Energie und können daher nicht mehr gegen die Gegenspannung US anlaufen. Dies ist zusehen an den Minima der IS-UA-Kennlinie. Die kinetische Energie der Elektronen wird also in innere Energie des Quecksilber-Atoms umgewandelt. Diese innere Energie gibt das QuecksilberAtom unter Emission eines Lichtquants wieder ab.

Nach der klassischen Theorie können die Energiebeträge, die die Quecksilber-Atome bei Anregung aufnehmen beliebig sein. Nach der Quantentheorie muss aber dem Atom bei einem Elementarprozess ein wohldefinierter Energiebetrag zugeführt werden. Der Verlauf der IS-UA- Kennlinie lässt sich erst aufgrund dieser Vorstellung erklären und ist deshalb eine Bestätigung der Quantentheorie.

Ist die FRANCK-HERTZ-Röhre kalt, so ist das Quecksilber praktisch vollständig kondensiert. Wird die Röhre aber in einem Ofen aufgeheizt, so bildet sich Quecksilberdampf und der direkte Weg zwischen Katode und Anode der Elektronen wird kleiner. Bei zu geringer Temperatur haben also viele Elektronen einen freien Weg zur Anode. Der Strom IS steigt plötzlich sehr stark an. Anderseits bei hoher Temperatur haben sehr wenige Elektronen einen freien Weg zur Anode. Es finden so viele elastische Stöße zwischen den Elektronen und den Quecksilber-Atomen statt, dass nur eine geringe Stromstärke IS nachweisbar wird. Maxima und Minima können in der IS-UA-Kennlinie nur schlecht unterschieden werden.

2.Versuchsdurchführung

2.1.Versuchsaufbau und verwendete Geräte:

Abbildung in dieser Leseprobe nicht enthalten

2.2.Durchführung

-Ofen vorheizen

-X-Y Schreiber kalibrieren

-Skalierung der x-Achse mit Hilfe eines externen Netzgerätes

-1. Messreihe:

Temperaturen (140°C, 160°C, 180°C, 200°C), maximale Beschleunigungsspannung UA=45V

Gegenspannung US=1,25V einstellen und schließlich zu den jeweiligen Temperaturen die IS-UA-Kennlinie aufnehmen

-2.Messreihe:

Temperatur konstant 160°C

Maximale Beschleunigungsspannung UA=45V

Gegenspannungen US (1,25V; 1V; 0,75V; 0,5V) einstellen und zu den jeweiligen Gegenspannungen die IS-UA-Kennlinie aufnehmen

2.3.Zusammenstellung der Messwerte

Abbildung in dieser Leseprobe nicht enthalten

Diagramme: siehe Anhang

3.Auswertung

3.1.Temperaturabhängigkeit:

Als erstes betrachten wir, inwieweit die IS-UA-Kennlinie abhängig von der Temperatur ist. Es lag eine konstante Spannung UA=45V und eine konstante Gegenspannung US=1,25V an. Die Messung wurde nun für die Temperaturen 140°C (schwarze Kurve), 160°C (rote Kurve), 180°C (blaue Kurve) und 200°C (grüne Kurve) durchgeführt.

Unabhängig von den Messfehlern (siehe 4.) können wir anhand dieser Kurven bestätigen, dass die IS-UA-Kennlinie temperaturabhängig ist. Bei niedrigen Temperaturen 140°C und 160°C hat sich eine geringe Menge Hg-Dampf gebildet und somit haben viele Elektronen einen direkten freien Weg zur Anode. Es kommt zu unelastischen Stößen zwischen den Elektronen und den Hg-Atomen. Die Maxima und Minima in der IS-UA-Kennlinie sind gut zu unterscheiden. Bei hohen Temperaturen 180°C und 200° dagegen hat sich mehr Hg-Dampf gebildet und wenige Elektronen haben einen direkten Weg zu Anode. Es kommt teilweise zu elastischen Stößen zwischen den Elektronen und den Hg-Atomen. Die Maxima und Minima in der IS-UA-Kennlinie sind nur schlecht unterscheidbar.

3.2.Abhängigkeit von der Gegenspannung:

Als nächsten betrachten wir, inwieweit die IS-UA-Kennlinie von der Gegenspannung abhängig ist. Es lag eine konstante Spannung UA=45V und eine konstante Temperatur von 160°C an. Die Messungen wurden nun für die Gegenspannungen US=0,5V (grüne Kurve), US=0,75V (blaue Kurve), US=1,0V (rote Kurve) und US=1,25V (schwarze Kurve) durchgeführt. Unabhängig von den Messfehlern (siehe 4.) können wir anhand dieser Kurven bestätigen, dass die IS-UA-Kennlinie von der Gegenspannung abhängig ist. Bei niedriger Gegenspannung erreichen sehr viele Elektronen die Anode, es kann ein hoher Strom IS gemessen werden. Die IS-UA-Kennlinie hat hohe Maxima und Minima. Bei hoher Gegenspannung dagegen erreichen haben es die Elektronen schwer die Anode zu erreichen. Die IS-UA-Kennlinie hat kleine Maxima und Minima.

Ohne Gegenspannung würden alle Elektronen die Anode erreichen. Die Aufgabe der Gegenspannung ist die eines Geschwindigkeitsfilters. Ohne sie würde der Strom kontinuierlich steigen.

3.3.Energiedifferenz der beiden beteiligten diskreten Elektronen-Energiezustände

Wenn bei einer ganz bestimmten Beschleunigungsspannung UA der Anodenstrom absinkt, dann haben die Elektronen nicht mehr genügend Energie, um die Gegenspannung US zu überwinden. Bei ihrem Weg durch den Quecksilberdampf haben sie offenbar durch unelastische Stöße Energie an die Hg-Atome abgegeben. Steigert man die Beschleunigungsspannung UA, so haben die Elektronen schon an einem Punkt, der weiter vor dem Gitter liegt, genug Energie den sie an die Hg-Atome abgeben können. Sie werden aber auf ihrem weiteren Weg von diesem Punkt bis zum Gitter erneut beschleunigt, so dass sie mit der neu gewonnen Energie die Gegenspannung US überwinden können, was der nun ansteigende Anodenstrom anzeigt. Haben sie aber bei weiterer Steigung der Beschleunigungsspannung nach ihrer ersten Abgabe von Energie auf ihrem weiteren Weg bis zum Gitter gerade soviel kinetische Energie gewonnen, dass sie kurz vom dem Gitter noch einmal die Energie von Ekin=4,89eV an die Quecksilberatome abgeben können, dann sinkt der Anodenstrom erneut ab, weil diese Elektronen nach zweimaliger Abgabe nicht mehr in der Lage sind, gegen die Gegenspannung anzulaufen. Das die Stromstärke nur Minima anzeigt und nicht jeweils auf Null wieder zurückgeht, ist auf die Geschwindigkeitsverteilung der stoßenden Elektronen zurückzuführen. Die Form der Kurve hängt auch von der Geometrie der Röhre ab. Das Entscheidende bei diesem Versuch ist dass das Absinken der Stromstärke immer bei Spannungen erfolgt, die sich genau um den Betrag von 4,89 eV voneinander unterscheiden. Das bedeutet aber, dass nur dann, wenn das Elektron nach durchlaufen der Spannung von 4,89 eV eine Energie von 4,89 eV erreicht hat, dass die Quecksilberatome nur diesen und keinen anderen Energiebetrag aufnehmen.

3.4.Abschließende Bemerkung:

Der Franck-Herz-Versuch gilt als wesentliche Stütze des BOHRschen Atommodells, weil durch diesen Versuch nachgewiesen wird, dass die Elektronen eines Atoms (hier Hg-Atom) sich nur auf diskrete Energieniveaus aufhalten. Konkreter heißt das nach dem BOHRschen Atommodell, dass sie sich auf Schalen bewegen können. Energieüberträge sind nur zwischen diesen Energieniveaus möglich. Gleichzeitig werden dabei Photonen emittiert.

BOHRsche Atommodell

Bohr veröffentliche 2 Postulate, wodurch die Emission und Absorption nur bestimmter Energiequanten erklärt werden konnte. Durch das 1. Postulat wird für das Elektron im Atom, eine Reihe von bestimmten Bahnen festgelegt.

Aussagen des 1.BOHRschen Postulats:

- die Elektronen bewegen sich auf Quantenbahnen
- die Bewegung der Elektronen verläuft strahlungsfrei
- Atome können sich in bestimmten stationären Zuständen befinden, in denen sie keine Energie abstrahlen, diesen stationären Zustand entsprechen stationäre Umlaufbahnen, auf denen sich Elektronen bewegen. Ungeachtet ihrer Radialbeschleunigung emittieren sie auf diesen Umlaufbahnen keine magnetische Strahlung.

Aussagen des 2.BOHRschen Postulats:

- springt ein Elektron von einer Bahn höherer Energie auf eine Bahn niedriger Energie wird die Energiedifferenz in Form eines Lichtquants abgestrahlt

Der Franck-Hertz-Versuch ist also ein Beweis dafür, dass Elektronen auf eine höhere Bahn gehoben werden können und wenn sie wieder auf eine niedrigere Bahn fallen geben sie Licht ab. Außerdem bestätigt der Versuch, dass die Energie, die Atome aufnehmen können gequantelt ist.

4.Fehlerbetrachtung

4.1.Berechnung des Mittelwertes:

Abbildung in dieser Leseprobe nicht enthalten

Die kleinste Energiedifferenz gemessen zwischen den Maxima der IS-UA-Kennlinie beträgt 4,6eV und die größte Energiedifferenz beträgt 4,9eV.

Der Mittelwert, berechnet durch Summe aller Energiedifferenzen durch deren Anzahl, beträgt 4,72eV.

Der Tabellenwert für die Energie des angeregten Überganges ist 4,89eV. Wir haben folglich eine Abweichung von 0,17eV bei unserem Versuch.

4.2.Empirische Standartabweichung und zufällige Messunsicherheit:

Empirische Standartabweichung:

Abbildung in dieser Leseprobe nicht enthalten

Zufällige Messunsicherheit:

Abbildung in dieser Leseprobe nicht enthalten

mit t=2 für P=95% (Praktikumsbedingungen)

Die empirische Standartabweichung bei unserem Versuch beträgt 0,698eV. Die zufällige Messunsicherheit bei unsrem Versuch beträgt 0,0239eV.

4.3.Allgeime Betrachtung des Versuches:

Die größten Messfehler treten bei der Einstellung der Temperatur an der Ofenheizung auf. Eine genaue Einstellung der Temperatur mit dem verwendeten Ofen war nicht möglich. Weiterhin treten Fehler bei der Ablesung aus der IS-UA-Kennlinie auf. Die Energiedifferenz konnte mit einer Genauigkeit von abgelesen werden. Also ist unser Ergebnis laut dieser

Fehlerbetrachtung:

Abbildung in dieser Leseprobe nicht enthalten

Unserer Ansicht nach liegt die Aussagekraft dieses Versuches in der Auswertung der Messreihe, die das Kontaktpotential und das Anregungspotential darstellt, wenngleich sie nicht in der Lage ist beide mit 100%iger Genauigkeit zu bestimmen, was jedoch unserer Meinung nach auch nicht beabsichtigt ist. Vielmehr geht darum zu zeigen, dass Quecksilber Atome nur diskrete Energiebeträge absorbieren können (siehe Aufgabenstellung1.).

5.Anhang

Diagramm 1 (Temperaturabhängigkeit)

Diagramm 2 (Abhängigkeit von der Gegenspannung) Aufzeichnungen beim Versuch

11 von 11 Seiten

Details

Titel
Franck-Hertz-Versuch
Autor
Jahr
2001
Seiten
11
Katalognummer
V99248
Dateigröße
501 KB
Sprache
Deutsch
Schlagworte
Franck-Hertz-Versuch
Arbeit zitieren
Stefan Koch (Autor), 2001, Franck-Hertz-Versuch, München, GRIN Verlag, https://www.grin.com/document/99248

Kommentare

  • Gast am 16.5.2004

    hinzufügen.

    schade das auf keine anderen gase eingegangen wurde,z.B.: Neon oder Natrium

Im eBook lesen
Titel: Franck-Hertz-Versuch



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden