A color code, also known as a color scheme, is a method of showing details using various colors. The parameters ambient, diffuse, specular, opacity, and color describe a solid color texture. These color-coded textures are used to determine the different colors of Trichoderma. Trichoderma is a free-living fungus that is highly interactive in the root, soil, and foliar habitats and is offered to organic producers as a wide range of Trichoderma-based products. Plant diseases can be controlled with biopesticides, which are biological insecticides. Trichoderma species are also important because they stimulate plant development while inhibiting the growth of plant diseases.
Due to the usage of this microbial inoculant in Trichoderma-based products, researchers are interested in learning more about the many prospective advantages of Trichoderma. Plant diseases, growth, breakdown, and bioremediation are all discussed. This article will also look at how they produce secondary metabolites in the agroecosystem. According to Zin and Badaluddin, these groundbreaking discoveries bring significant benefits to the agriculture industry in terms of environmentally friendly farming practices.
Inhaltsverzeichnis
- ABSTRACT
- TRICHODERMA CLASSIFICATION SYSTEM BASED ON COLOR CODE TEXTURE OF POTATO DEXTROSE AGAR SOLID (PDA) USING TENSORFLOW WITH PROTOTYPE.
- LIST OF FIGURES
- FIGURE 1 Conceptual Framework of the study.
- FIGURE 2 Locale map of the study of Davao del sur state college.
- FIGURE 3 Waterfall Diagram.
- FIGURE 4 Theoretical Framework of the study.
- FIGURE 5 The operational Framework of Trichoderma based on color code Texture.
- FIGURE 6 Flow Chart.
- FIGURE 7 Remote control to run the motorized camera dolly.
- FIGURE 8 Camera that slides along the track, ensuring smooth and steady movement.
- FIGURE 9 Captured image using controlled camera.
- FIGURE 10 Determine the healthy solid Trichoderma culture ready to harvest.
- FIGURE 11 Flow chart.
- FIGURE 12 Pseudocode of healthy solid Trichoderma ready to harvest.
- FIGURE 13 Classify difference of solid Trichoderma between healthy and contaminated through color recognition.
- FIGURE 14 Flow chart.
- FIGURE 15 Pseudocode of Classification between healthy and contaminated.
- FIGURE 16 Testing manual efficiency.
- FIGURE 17 Generate software.
- FIGURE 18 Training loss.
- FIGURE 19 Training accuracy.
- FIGURE 20 Model screen.
- FIGURE 21 Prototype of the desktop application system.
Zielsetzung und Themenschwerpunkte
Ang layunin ng pag-aaral na ito ay upang bumuo ng isang sistema ng klasipikasyon ng Trichoderma batay sa kulay at texture ng potato dextrose agar solid (PDA) gamit ang TensorFlow. Ang sistemang ito ay naglalayong gawing awtomatiko ang proseso ng klasipikasyon ng Trichoderma sa pamamagitan ng paggamit ng desktop application system. Naglalayong din ang pag-aaral na ito na matulungan ang mga laboratoryo na magkaroon ng mas mahusay na kontrol sa kalidad ng kanilang mga Trichoderma cultures.
- Pagbuo ng isang sistema ng klasipikasyon ng Trichoderma
- Paggamit ng TensorFlow para sa pag-detect at klasipikasyon ng kulay at texture
- Pagbuo ng isang desktop application system para sa awtomatiko ng klasipikasyon
- Pagpapabuti ng kontrol sa kalidad ng mga laboratoryo ng Trichoderma
- Pagbawas ng manu-manong proseso sa pagsusuri ng Trichoderma
Zusammenfassung der Kapitel
Ang pag-aaral ay nagsimula sa isang maikling pagpapakilala sa konteksto ng Trichoderma at ang pangangailangan para sa isang mas mahusay na sistema ng klasipikasyon. Kasama rin dito ang pag-aaral ng mga kaugnay na literatura at ang pagbuo ng konseptwal na balangkas ng pag-aaral. Ipinakita ang mga pangunahing pamamaraan na ginamit sa pagbuo ng sistema ng klasipikasyon, kabilang ang paggamit ng TensorFlow at ang pagbuo ng desktop application system. Ang pag-aaral ay nagtatapos sa isang pagsusuri sa mga resulta, pagtalakay sa mga implikasyon ng mga natuklasan, at ang mga rekomendasyon para sa hinaharap na pananaliksik.
Schlüsselwörter
Ang mga pangunahing keyword at mga paksa ng pag-aaral na ito ay: Trichoderma, klasipikasyon, kulay at texture, potato dextrose agar solid (PDA), TensorFlow, desktop application system, kontrol sa kalidad, awtomasyon, pag-aaral ng imahe, laboratoryo ng Trichoderma.
- Quote paper
- Randy Ramirez (Author), 2020, Trichoderma Classification System Based on Color Code Texture of Potato Dextrose Agar Solid Using Tensorflow with Prototype, Munich, GRIN Verlag, https://www.grin.com/document/1061354