Grin logo
en de es fr
Shop
GRIN Website
Publicación mundial de textos académicos
Go to shop › Ciencias de la computación - Otras

Renormalization. Method for Examining Digital Image Processing Problems based on Renormalization Group Ideas

Título: Renormalization. Method for Examining Digital Image Processing Problems based on Renormalization Group Ideas

Trabajo , 2024 , 8 Páginas , Calificación: NA

Autor:in: Joel Bijoy (Autor)

Ciencias de la computación - Otras
Extracto de texto & Detalles   Leer eBook
Resumen Extracto de texto Detalles

This paper presents a method for Examining Digital Image Processing Problems based on Renormalization Group Ideas, Markov Random Field Modeling of Images, and Metropolis-Type Monte Carlo algorithm, pro. The method can be used effectively in combination and can be used in rehabilitation, drug control tissue, coding, movement analysis, etc. It provides integration to perform hierarchical, multi-scale, coarseto-fine analysis of functional images such as The technique was developed and used for the restoration of distorted images. Inverse algorithms are global optimization algorithms used for other optimization problems. It iteratively creates multilevel cascades of recovered images at different resolution or scale levels.

Image processing is hard work, especially when it comes to images with complex patterns such as textures or fractals. Traditional image processing techniques may not be sufficient to extract features from such images. However, the Renormalization Group (RG) method provides a hierarchical and systematic way to analyze images at different scales and extract their associated features. The purpose of this document is to provide an overview of the conversion suite for image processing and its applications.

Extracto


Inhaltsverzeichnis (Table of Contents)

  • 1. INTRODUCTION
  • 2. LITERATURE REVIEW
  • 3. PROPOSED METHOD
    • 3.1. Multiscale Edge Detection Using Wavelet Transform:
    • 3.2. Image noise reduction using the wavelet thresholding method:
    • 3.2. Image compression using discrete cosine transform:

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This document provides an overview of the use of Renormalization Group (RG) ideas in image processing, outlining its application in various tasks like image segmentation, noise reduction, and enhancement.

  • The application of Renormalization Group (RG) methods in image processing.
  • RG as a tool for analyzing image models at different levels of detail.
  • Exploring the capabilities of RG in various image processing applications such as segmentation, noise reduction, and enhancement.
  • Highlighting the advantages of RG in providing a hierarchical and systematic approach for image analysis.
  • Demonstrating how RG can complement other techniques like wavelets and phase processes to improve image processing performance.

Zusammenfassung der Kapitel (Chapter Summaries)

  • 1. INTRODUCTION: This chapter introduces the concept of Renormalization Group (RG) and its application in image processing. It highlights the challenges of processing complex images with textures or fractals and presents RG as a solution for analyzing images at different scales.
  • 2. LITERATURE REVIEW: This chapter provides a summary of key research studies investigating the use of RG in image processing. It discusses specific applications like pattern recognition, noise removal, and segmentation, with examples of studies that have utilized RG techniques.
  • 3. PROPOSED METHOD: This chapter presents a proposed method for implementing RG in image processing. It discusses three specific applications: multiscale edge detection using wavelet transform, image noise reduction using wavelet thresholding, and image compression using discrete cosine transform. Each application is described step-by-step, providing practical insights into the method's implementation.

Schlüsselwörter (Keywords)

Renormalization Group (RG), Image Processing, Image Segmentation, Image Noise Reduction, Image Enhancement, Texture Analysis, Wavelet Transform, Discrete Cosine Transform, Multiscale Edge Detection, Wavelet Thresholding, Image Compression, Pattern Recognition.

Final del extracto de 8 páginas  - subir

Detalles

Título
Renormalization. Method for Examining Digital Image Processing Problems based on Renormalization Group Ideas
Curso
BCA
Calificación
NA
Autor
Joel Bijoy (Autor)
Año de publicación
2024
Páginas
8
No. de catálogo
V1473129
ISBN (PDF)
9783389026298
Idioma
Inglés
Etiqueta
image modeling Image analysis
Seguridad del producto
GRIN Publishing Ltd.
Citar trabajo
Joel Bijoy (Autor), 2024, Renormalization. Method for Examining Digital Image Processing Problems based on Renormalization Group Ideas, Múnich, GRIN Verlag, https://www.grin.com/document/1473129
Leer eBook
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
Extracto de  8  Páginas
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contacto
  • Privacidad
  • Aviso legal
  • Imprint