Grin logo
en de es fr
Shop
GRIN Website
Publicación mundial de textos académicos
Go to shop › Economía de las empresas - Negocios, Investigación de operaciones

Service Quality Measurement - Data Management

Título: Service Quality Measurement - Data Management

Trabajo , 2003 , 36 Páginas , Calificación: 1.8

Autor:in: MBA Andreas Keller (Autor)

Economía de las empresas - Negocios, Investigación de operaciones
Extracto de texto & Detalles   Leer eBook
Resumen Extracto de texto Detalles

Over the past decade Service Quality Measurement (SQM) has been receiving more attention worldwide and taking a more central role as a measurement of success. The notion of Service Quality is found well documented throughout the literature and describes the interactive process between the customer and the service provider. In general, the SQM is a powerful technique to monitor customer satisfaction, helping to focus on key areas of improvement in order to establish a new baseline to the current service quality rating.
The importance for service organisations is twofold: firstly, in the implications entailed in how to choose the most appropriate technique of service quality measurement, and secondly, in how service organisations can influence the perceptions of an individual customer/user in relation to the service encounter he/she is participating in. Empirically, this involves moving away from a standardised model of the same service for everybody to an approach where the best way of achieving excellent performance lies in addressing the subjective needs of an individual customer, providing precisely the specific service that reflects customers/ individuals’ perceptions.
In other words, service is not so much what the business does, per se, but what the customer experiences (Martin 1999i).

Extracto


Inhaltsverzeichnis (Table of Contents)

  • Abstract
  • Introduction
  • Part A - Questionnaire “Palavrion Corporation”
    • Comments - Strengths & Weaknesses
    • Probability Based Sampling Strategy
    • Non-Probability Based Sampling Strategy
  • Part B: Service Quality Satisfaction Survey - ADMECO AG
    • Introduction
      • Overview of ADMECO AG
    • Problem Description & Objectives of Survey
    • Definition of Population & Sampling Process
      • Population
      • Sampling; Consideration & Process
    • Questionnaire Design
      • Procedure & Guiding Principle
      • Guiding Principle
      • Design & Layout
      • Pre-test the Questionnaire
    • Result of Survey
      • Response Rate
      • Overview of Answers
      • Personal Interaction - Analysis of Section 1
      • Business Savvy - Analysis of Section 2
      • Added Value - Analysis of Section 3
    • Conclusion
  • Part C: Middling Records - Data Analysis
    • Introduction
    • Presentation of Data
    • Retrospective Analysis
      • Model Validation
        • Multiple R
        • Correlation Coefficient (R2)
        • Confidence Interval (CI)
        • Outliers
    • Regression Model of CQSI - Forecasting 4th Quarter
    • Comparison between Outlets - Impact on Sampling Strategy/Forecast
  • Part D - Reflection
    • Sampling Process/Questionnaire
    • Data Analysis
  • Appendices
    • Palavrion Corporation Survey Form
    • Service Quality Satisfaction Survey - ADMECO AG
    • Middling Records Data Tables
  • References

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This paper explores practical and theoretical approaches to data management in the context of service quality measurement. It examines the strengths and weaknesses of a customer satisfaction questionnaire, explores sampling strategies, and analyzes a service quality satisfaction survey and a data set related to customer satisfaction. The paper also includes a reflection on the learning points and insights gained from the assignment.

  • Service Quality Measurement (SQM) and its importance in business success
  • Customer satisfaction analysis as an integral part of business strategy
  • Questionnaire design and its impact on data collection and analysis
  • Sampling strategies and their influence on data reliability and representativeness
  • Data analysis techniques and their application in forecasting and decision-making

Zusammenfassung der Kapitel (Chapter Summaries)

Part A of the paper analyzes a customer satisfaction questionnaire (CSQ) designed by Palavrion Corporation, a Canadian restaurant chain. The analysis focuses on the strengths and weaknesses of the questionnaire's design and discusses the applicability of probability-based and non-probability-based sampling strategies.

Part B examines a service quality satisfaction survey conducted at ADMECO AG, a Swiss company. The focus is on the questionnaire design, the sampling process, and the analysis of survey results.

Part C analyzes data from a survey conducted at Middling Records, a business with multiple outlets. The analysis includes model validation, regression analysis, and forecasting.

Part D offers a reflection on the key learning points and insights gained from the assignment, particularly concerning the sampling process, questionnaire design, and data analysis techniques.

Schlüsselwörter (Keywords)

Service quality measurement, customer satisfaction, questionnaire design, sampling strategies, data analysis, regression analysis, forecasting, business strategy, IT service provider, survey research.

Final del extracto de 36 páginas  - subir

Detalles

Título
Service Quality Measurement - Data Management
Universidad
University of Strathclyde
Calificación
1.8
Autor
MBA Andreas Keller (Autor)
Año de publicación
2003
Páginas
36
No. de catálogo
V178462
ISBN (Ebook)
9783656004479
ISBN (Libro)
9783656005025
Idioma
Inglés
Etiqueta
service quality measurement data management
Seguridad del producto
GRIN Publishing Ltd.
Citar trabajo
MBA Andreas Keller (Autor), 2003, Service Quality Measurement - Data Management, Múnich, GRIN Verlag, https://www.grin.com/document/178462
Leer eBook
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
Extracto de  36  Páginas
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contacto
  • Privacidad
  • Aviso legal
  • Imprint