Die fraktale Geometrie ist ein relativ neues Teilgebiet der Mathematik. Sie befasst sich mit geometrischen Objekten, den sog. Fraktalen, deren Eigenschaften sich von denen der “klassischen” Geometrie grundlegend unterscheiden. Wichtigstes Merkmal von Fraktalen ist die Skaleninvarianz, d.h., dass man bei jeder Vergrößerungsstufe Einzelheiten erkennen kann, egal wie stark man in das Objekt hinein dringt. Wenn man dagegen den Rand eines “klassischen” Objektes, wie den des Kreises, vergrößert, so ähnelt dieser mit zunehmender Vergrößerung immer mehr einer schlichten Gerade. Solche Objekte werden demnach als glatt bezeichnet. Bei einem Fraktal wird man jedoch nie eine Gerade erkennen können, sondern immer mehr Feinheiten des Objektes. Daher rührt die Bezeichnung “Fraktal”, vom lateinischen “fractus” für “gebrochen”, d.h. mit unzähligen Details übersät. Derartige Objekte waren schon seit Anfang des 20. Jahrhunderts bekannt, aber erst ab ca. 1970 wurde deren grundlegende Bedeutung erkannt. Davor wurden diese Objekte als “mathematische Monster” bezeichnet, da sie, wie ich im Folgenden erläutern werde, paradoxe Eigenschaften besitzen, die dem menschlichen Verstand mehr oder weniger “unbegreiflich” erscheinen. Dies änderte sich erst durch die Arbeit des Mathematikers Benoît Mandelbrot. Er erkannte, dass man mit Fraktalen etwas gänzlich Neues machen konnte, etwas was bis zu dieser Zeit als praktisch mathematisch unmöglich galt: die Modellierung und Beschreibung von “unregelmäßigen” Objekten der Natur, insbesondere der belebten, von der man annahm, sie könne nicht geometrisch beschrieben werden.
In dieser Besonderen Lernleistung setzte ich mich zunächst mit den “klassischen” Fraktalen des 20. Jahrhunderts auseinander, um anhand dieser die grundlegenden Konzepte der Fraktalgeometrie zu erläutern. Anschließend stelle ich die sog. iterierten Funktionensysteme (IFS), ein mächtiges Verfahren zur Kodierung und Generierung von Fraktalen, vor. Dabei werde ich auf die genaue Definition und deren Verwendung zur Modellierung und Darstellung Natur-ähnlicher Strukturen eingehen. Um die Theorie der Fraktale anschaulich erläutern zu können, habe ich diese Arbeit mit zahlreichen Bildern, die ich zum Großteil selbst erstellt habe, illustriert.
Im Rahmen dieser BeLL ist ebenfalls ein Computerprogramm entstanden, das die Funktionalität der IFS implementiert und anschaulich begreifbar macht.
Inhaltsverzeichnis
1 Einleitung
2 Begrie und De nitionen
2.1 Räume
2.1.1 Vektorräume
2.1.2 Metrische Räume
2.2 A ne Abbildungen
2.2.1 Translation
2.2.2 Skalierung
2.2.3 Rotation
2.2.4 Weitere a ne Abbildungen
2.2.5 Verkettung a ner Abbildungen
2.2.6 Berechnung einer a nen Abbildung
2.2.7 Fixpunkte a ner Abbildungen
2.2.8 Eigenschaften a ner Abbildungen
2.2.9 Kontraktionen
2.3 Dimension
2.3.1 Topologische Dimension
3 Klassische Fraktale
3.1 Was ist ein Fraktal?
3.2 Die Koch-Kurve
3.2.1 Selbstähnlichkeit der Koch-Kurve
3.2.2 Die Länge der Koch-Kurve
3.3 Die Cesàro-Kurve
3.3.1 Die fraktale Dimension D der Cesàro-Kurve
3.3.2 Allgemeine Flächenformel der Cesàro-Kurve
3.4 Weitere klassische Fraktale
3.4.1 Das Sierpi«ski-Dreieck
3.4.2 Der Sierpi«ski-Teppich
4 Iterierte Funktionensysteme (IFS)
4.1 Die Metapher der MVKM
4.2 De nition von IFS
4.3 Kodierung von Fraktalen durch IFS
4.4 Fraktale Modellierung mit Hilfe von IFS
4.5 Der Chaosspiel-Algorithmus
4.6 Die Box-Dimension DB
4.7 Ausblick
5 Eigene Wertung
6 Anhang
6.1 Das Programm IFS-Generator
6.1.1 Anmerkung zur verwendeten Programmiersprache
6.1.2 Quelltexte
6.2 Struktogramme
6.2.1 deterministischer Algorithmus (MVKM)
6.2.2 Chaosspiel-Algorithmus (GVKM)
6.3 Materialien auf CD-ROM
6.4 Literaturverzeichnis
6.5 Bildnachweise
Häufig gestellte Fragen
Was ist ein Fraktal?
Ein Fraktal ist ein geometrisches Objekt, das Skaleninvarianz und Selbstähnlichkeit aufweist. Das bedeutet, dass man bei jeder Vergrößerung immer wieder ähnliche Strukturen erkennt.
Was sind iterierte Funktionensysteme (IFS)?
IFS sind mathematische Verfahren zur Generierung von Fraktalen durch wiederholte Anwendung affiner Abbildungen wie Skalierung, Rotation und Translation.
Wer prägte den Begriff „Fraktal“?
Der Begriff wurde um 1970 von dem Mathematiker Benoît Mandelbrot eingeführt, der die Bedeutung dieser Objekte für die Beschreibung der Natur erkannte.
Was ist die Koch-Kurve?
Die Koch-Kurve ist ein klassisches Fraktal, das zeigt, wie eine unendlich lange Linie eine begrenzte Fläche umschließen kann – eine paradoxe Eigenschaft fraktaler Geometrie.
Wie kann man Fraktale zur Modellierung der Natur nutzen?
Mit IFS lassen sich unregelmäßige Strukturen der Natur wie Farne, Wolken oder Küstenlinien mathematisch präzise beschreiben und grafisch darstellen.
- Quote paper
- Adrian Jan Jablonski (Author), 2010, Grundlagen der fraktalen Geometrie mit iterierten Funktionensystemen (IFS), Munich, GRIN Verlag, https://www.grin.com/document/193908