Grin logo
en de es fr
Shop
GRIN Website
Publicación mundial de textos académicos
Go to shop › Matemática - Análisis

Asymptotic Condition and Deficiency Indices of Difference Operators

Título: Asymptotic Condition and Deficiency Indices of Difference Operators

Texto Academico , 2019 , 13 Páginas , Calificación: A

Autor:in: Evans Mogoi (Autor)

Matemática - Análisis
Extracto de texto & Detalles   Leer eBook
Resumen Extracto de texto Detalles

Jacobi matrices together with Sturm-Liouville operators and have already been developed in parallel for many years. However not much in terms of spectral theory has been done in the discrete setting compared to the continuous version especially in higher order operators. The main objective of this study is to compute the deficiency indices of Fourth order difference operator.

Extracto


Inhaltsverzeichnis (Table of Contents)

  • Abstract
  • Introduction
  • Basic Concepts
    • Definition 0.1.
    • Definition 0.2.
    • Definition 0.3.
    • Definition 0.4.
  • Hamiltonian System

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

The primary objective of this study is to determine the deficiency indices of a fourth-order difference operator, which is a discrete analogue of a Sturm-Liouville operator. The study focuses on the operator generated by a specific fourth-order difference equation defined on a weighted Hilbert space.

  • Deficiency indices of fourth-order difference operators
  • Spectral theory in the discrete setting
  • Asymptotic summation and Levinson-Benzaid-Lutz theorem
  • Discrete Hamiltonian systems
  • Self-adjoint extensions of symmetric operators

Zusammenfassung der Kapitel (Chapter Summaries)

  • Abstract: This section provides a concise overview of the study's objective and scope, highlighting the focus on computing the deficiency indices of a fourth-order difference operator.
  • Introduction: This chapter introduces the research problem, emphasizing the lack of extensive spectral theory development for higher-order difference operators compared to their continuous counterparts. It outlines the study's aim of investigating the deficiency indices of a fourth-order difference operator generated by a specific difference equation defined on a weighted Hilbert space.
  • Basic Concepts: This section defines fundamental concepts essential for understanding the subsequent analysis. It introduces forward and backward difference operators, describes symmetric operators and their extensions, and defines the deficiency indices of an operator.
  • Hamiltonian System: This chapter discusses the transformation of the fourth-order difference equation into a first-order Hamiltonian system. It explains the use of quasi-differences and introduces the spectral parameter to solve the equation.

Schlüsselwörter (Keywords)

This study focuses on the deficiency indices, fourth-order difference operators, discrete spectral theory, asymptotic summation, Levinson-Benzaid-Lutz theorem, Hamiltonian systems, and self-adjoint extensions.

Final del extracto de 13 páginas  - subir

Detalles

Título
Asymptotic Condition and Deficiency Indices of Difference Operators
Curso
pure mathematics
Calificación
A
Autor
Evans Mogoi (Autor)
Año de publicación
2019
Páginas
13
No. de catálogo
V496168
ISBN (Ebook)
9783346011305
ISBN (Libro)
9783346011312
Idioma
Inglés
Etiqueta
asymptotic condition difference operators deficiency indices
Seguridad del producto
GRIN Publishing Ltd.
Citar trabajo
Evans Mogoi (Autor), 2019, Asymptotic Condition and Deficiency Indices of Difference Operators, Múnich, GRIN Verlag, https://www.grin.com/document/496168
Leer eBook
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
Extracto de  13  Páginas
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contacto
  • Privacidad
  • Aviso legal
  • Imprint