Grin logo
en de es fr
Shop
GRIN Website
Publicación mundial de textos académicos
Go to shop › Matemática - Otros

Eigenvalues and Dichotomy Condition of Difference Operators

Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space

Título: Eigenvalues and Dichotomy Condition of Difference Operators

Texto Academico , 2018 , 6 Páginas , Calificación: A

Autor:in: Evans Mogoi (Autor)

Matemática - Otros
Extracto de texto & Detalles   Leer eBook
Resumen Extracto de texto Detalles

Sturm-Lioville equations and their discrete counterparts, Jacobi matrices are analyzed using similar and related methods. However much is needed to be done in terms of spectral theory in the discrete setting.The objective of the study is to compute the deficiency indices, approximate the eigenvalues and establish the dichotomy condition of a Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space.

Extracto


Inhaltsverzeichnis (Table of Contents)

  • INTRODUCTION
  • DICHOTOMY CONDITION
    • Theorem 1
    • Remark 1
    • Theorem 2
  • DIAGONALISATION

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This study aims to approximate the eigenvalues and establish the dichotomy condition for a Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space. The research examines the spectral theory of difference equations, focusing on the relationship between the eigenvalues and the dichotomy condition.

  • Spectral theory of difference equations
  • Eigenvalues and their approximation
  • Dichotomy condition for difference operators
  • Fourth Order Difference equation with Unbounded Coefficients
  • Hilbert Space analysis

Zusammenfassung der Kapitel (Chapter Summaries)

  • INTRODUCTION: This section introduces the research problem and its relevance, highlighting the importance of studying the spectral theory of difference equations in the discrete setting. It outlines the specific fourth-order difference equation under investigation and the conditions imposed on its coefficients.
  • DICHOTOMY CONDITION: This section focuses on establishing the dichotomy condition for the eigenvalues of the difference operator. It presents the main theorems and results that provide a theoretical framework for understanding the relationship between eigenvalues and the dichotomy condition. It introduces the concept of asymptotically constant difference equations and their relevance to the dichotomy condition.
  • DIAGONALISATION: This section explores the diagonalization of the system of difference equations. It explains the process of converting the first-order system into its Levinson-Benzaid-Lutz form by computing the eigenvectors corresponding to the eigenvalues. The section emphasizes the importance of second diagonalization for achieving the Levinson-Benzaid-Lutz form and highlights the conditions required for its implementation.

Schlüsselwörter (Keywords)

Key terms and concepts explored in this work include difference operators, Jacobi matrices, Sturm-Liouville operators, eigenvalues, dichotomy condition, fourth-order difference equations, unbounded coefficients, Hilbert space, spectral analysis, regularity condition, deficiency indices, maximal operator, minimal operator, fundamental matrix, Hamiltonian restriction, self-adjoint boundary conditions, limit point case, Levinson-Benzaid-Lutz form, quasi-differences, diagonalisation, perturbing matrix.

Final del extracto de 6 páginas  - subir

Detalles

Título
Eigenvalues and Dichotomy Condition of Difference Operators
Subtítulo
Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space
Curso
PURE MATHEMATICS
Calificación
A
Autor
Evans Mogoi (Autor)
Año de publicación
2018
Páginas
6
No. de catálogo
V496901
ISBN (Ebook)
9783346017451
Idioma
Inglés
Etiqueta
DEFFERENCE OPERATORS DICHOTOMY CONDITION FOURTH ORDER DIFFERENCE OPERATORS
Seguridad del producto
GRIN Publishing Ltd.
Citar trabajo
Evans Mogoi (Autor), 2018, Eigenvalues and Dichotomy Condition of Difference Operators, Múnich, GRIN Verlag, https://www.grin.com/document/496901
Leer eBook
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
  • Si ve este mensaje, la imagen no pudo ser cargada y visualizada.
Extracto de  6  Páginas
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contacto
  • Privacidad
  • Aviso legal
  • Imprint