Grin logo
en de es fr
Shop
GRIN Website
Publier des textes, profitez du service complet
Go to shop › Mathématiques - Analyse

Solved Problems on Differential Equations

Titre: Solved Problems on Differential Equations

Note de Cours Magistral , 2019 , 39 Pages

Autor:in: Nagjibhai Rabari (Auteur)

Mathématiques - Analyse
Extrait & Résumé des informations   Lire l'ebook
Résumé Extrait Résumé des informations

This paper is about problem solving course on differential equations. It would invite the students to the subject of Mathematics and would inspire them to look to some comprehensive books on problem solving. This paper consists of several examples of differential equations and is based on lectures given to final year students of master programme. All examples are completely given in a lucid student friendly manner. A large number of solved exercises are included.

Extrait


Table of Contents

  • Q-1 Solve y\"+xy′+y\n= O near 0.
  • Q-2 Solve (1 - x²)y” −2xy' +n(n + 1)y = 0 near 0 ; where n is constant.
  • Q-3 State and solve Bessel's differential equation of order P near 0.
  • Q-4 Check the nature of ∞ for x¹y\"+x³ (x + 2)y'+y = 0
  • Q-5 Find an ordinary and singular points of the following differential equation y\"\n1\nY\" + (x−1)*(x+2)}' + (x−1) = 0\nx-\ny+\n
  • Q-6 Discuss the behavior of singular soution of Bessel's equation and find its indicial equation.

Objectives and Key Themes

The main objective of this text is to demonstrate and explore various methods for solving different types of differential equations. This includes both ordinary and singular points, as well as the behavior of solutions near specific points.

  • Solving differential equations using series methods
  • Identification of ordinary and singular points in differential equations
  • Analysis of the behavior of solutions near singular points
  • Exploring specific types of differential equations, such as Bessel's equation
  • Transformation of differential equations for analysis of different regions

Chapter Summaries

  • Q-1: This section demonstrates the use of series methods to solve a second-order differential equation near the ordinary point x = 0. The solution is derived by substituting a series form for y and solving for the coefficients.
  • Q-2: Similar to Q-1, this chapter utilizes series methods to solve a second-order differential equation, this time involving a constant parameter n. The method involves finding a recurrence relation for the coefficients of the series solution.
  • Q-3: This chapter introduces Bessel's differential equation of order P and demonstrates its solution using the Frobenius method. This method involves finding a series solution with a possible fractional power of x.
  • Q-4: This section investigates the nature of the point at infinity for a given differential equation. Through a transformation of variables, the equation is analyzed near the point t = 0, revealing the nature of the point at infinity as an irregular singular point.
  • Q-5: This chapter focuses on identifying ordinary and singular points of a given differential equation. By examining the analyticity of the coefficients, it demonstrates how to classify points as ordinary or singular.
  • Q-6: This chapter delves into the behavior of solutions near the singular point x = 0 in Bessel's equation. The indicial equation is derived, which determines the possible values of the exponent in the Frobenius series solution.

Keywords

This text focuses on the application of series methods for solving differential equations, with an emphasis on Bessel's differential equation. Key terms include ordinary points, singular points, regular singular points, irregular singular points, Frobenius method, indicial equation, Bessel's equation, and Bessel functions.

Fin de l'extrait de 39 pages  - haut de page

Résumé des informations

Titre
Solved Problems on Differential Equations
Auteur
Nagjibhai Rabari (Auteur)
Année de publication
2019
Pages
39
N° de catalogue
V499425
ISBN (ebook)
9783346085405
ISBN (Livre)
9783346085412
Langue
anglais
mots-clé
solved problems differential equations
Sécurité des produits
GRIN Publishing GmbH
Citation du texte
Nagjibhai Rabari (Auteur), 2019, Solved Problems on Differential Equations, Munich, GRIN Verlag, https://www.grin.com/document/499425
Lire l'ebook
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
Extrait de  39  pages
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contact
  • Prot. des données
  • CGV
  • Imprint