Finite Differenzen Methoden


Seminararbeit, 2007

35 Seiten, Note: 1,0


Leseprobe

Christian-Albrechts-Universität zu Kiel, Institut für Volkswirtschaftslehre
Seminar „Empirical Finance and Derivative Pricing“
Wintersemester 2006/07, 9. Fachsemester

Finite difference methods

von

Michael Czirr

 


Inhaltsverzeichnis

1 Einleitung 1

2 Konzeptioneller Rahmen finiter Differenzen zur Optionspreisbestimmung 2

2.1 Transformation der Black-Scholes-Differentialgleichung 2
2.2 Finite Differenzen-Approximation 4
2.3 Diskretisierung mittels finiter Differenzen  5

3 Verfahren finiter Differenzen  7

3.1 Das explizite Verfahren 7

3.1.1 Das Gleichungssystem 7
3.1.2 Stabilität, lokale Genauigkeit und Konvergenz  8
3.1.3 Numerisches Beispiel 9

3.2 Die impliziten Verfahren 10

3.2.1 Das vollständig implizite Verfahren  10
3.2.2 Das Crank-Nicolson-Verfahren  12
3.2.3 Das q-Verfahren 13
3.2.4 Numerisches Beispiel 13

4 Bewertung amerikanischer Optionen mittels finiter Differenzen 16

4.1 Amerikanische Optionen als freie Randwertprobleme  16
4.2 Numerisches Beispiel 17

5 Schlussbetrachtung 19

Anhang  20

Literaturverzeichnis 31
 

 


 

1 Einleitung

Fundamentaler Bestandteil mathematischer Modelle zur Bewertung von Optionen auf Basiswerte wie Aktien stellt die Lösung partieller Differentialgleichungen dar, deren Ausgestaltung von spezifischen Annahmen unter anderem hinsichtlich der Verteilung von Renditen, der Konstanz von Modellparametern und der Berücksichtigung von Steuern und Gebühren abhängt. Da die Herleitung des theoretischen Rahmens adäquater Bewertungsmodelle nicht Gegenstand dieser Arbeit ist, soll ohne weitere Kritik der einschneidenden Annahmen analog zur ausgewerteten Literatur die Black- Scholes-Differentialgleichung1 als Ausgangspunkt der Preisbestimmung für Aktienoptionen herangezogen werden.2 Die Notwendigkeit des Einsatzes numerischer Methoden, zu denen neben den Verfahren finiter Differenzen auch Monte-Carlo-, Baum- und Finite-Elemente-Modelle zählen, liegt dann darin begründet, dass die Black-Scholes-Gleichung nur im Fall europäischer Optionen analytisch lösbar ist, so dass für die Menge der übrigen Optionsvarianten nur numerische Verfahren die Generierung eines quantitativen Ergebnisses ermöglichen. Erstmalig von Brennan/Schwartz [1977] auf die Bewertung amerikanischer Optionen angewandt, sieht der Grundgedanke der Finite- Differenzen-Methode die Zerlegung der zugrundeliegenden Differentialgleichung in ein endliches System von Differenzengleichungen vor und liefert infolgedessen eine diskrete Approximation der kontinuierlichen Differentialgleichung.3 Aus der iterativen Vorgehensweise dieses Verfahrens resultiert, dass Optionswerte stets für eine Fläche von Kursen des Basiswertes sowie der Optionsrestlaufzeit ermittelt werden und sich nicht wie in geschlossenen Lösungsansätzen auf die alleinige Optionspreisberechnung zu einem gewissen Kurs und Zeitpunkt beschränkt wird.

Ziel dieser Arbeit ist es, die Methodik finiter Differenzen zur Optionspreisbestimmung am Beispiel europäischer Optionen zu entwickeln, auf die praktisch relevantere Bewertung amerikanischer Optionen auszuweiten und durch numerische Beispiele der im Anhang befindlichen Matlab 7.1 Implementierungen zu illustrieren. Dazu wird in Kapitel 2 der konzeptionelle Rahmen der Anwendung finiter Differenzen beschrieben, bevor Kapitel 3 die Verfahren finiter Differenzen mit der Konkretisierung für europäische Optionen präsentiert und Kapitel 4 nach kurzer Darstellung des modelltheoretischen Hintergrundes mit der Preisberechnung amerikanischer Optionen schließt.

2 Konzeptioneller Rahmen finiter Differenzen zur Optionspreisbestimmung

2.1 Transformation der Black-Scholes-Differentialgleichung

Entsprechend dem Vorgehen der Autoren Wilmott et al. [1996] sowie Seydel [2000] soll im weiteren Verlauf nicht die Black-Scholes-Gleichung direkt, sondern die aus der Physik stammende Diffusionsgleichung analysiert werden, da diese die Erarbeitung und Lösung der Finite- Differenzen-Methoden in einem einfacheren Modellrahmen zulässt und beide Gleichungen äquivalent sind.4 Folglich kann bewiesen werden, dass die Black-Scholes-Gleichung unter Berücksichtigung von Dividenden

[Formel in der Downloaddatei vorhanden]

mittels nachstehender Variablentransformationen

[Formel in der Downloaddatei vorhanden]

in die Diffusions- bzw. Wärmeleitungsgleichung

überführt werden kann. Ziel der Methoden finiter Differenzen ist die approximative Bestimmung der ) , ( t x U , die die Gleichung (3) erfüllen, bevor in einem abschließenden Retransformationsschritt aus den ) , ( t x U die letztlich interessierenden Optionswerte V(S,t) berechnet werden können. Die hierzu erforderliche Variablenransformation bewirkt, dass die in Einheiten meßbaren Variablen S(t) und t in die dimensionslosen Variablen x und t übertragen werden und der Definitionsbereich der betrachteten Variablen in der Form

[Formel in der Downloaddatei vorhanden]

angepasst wird.

Als Konsequenz der Zeittransformation, in der ursprünglich das aktuelle Datum mit t=0 und der Verfalltag der Option durch t=T gegeben war, repräsentiert in der ) , ( t x U -Sichtweise 0 = t den Verfalltag und T 2 * 5 . 0 s t = das aktuelle Datum.5
Neben der Definition der Differentialgleichung bedarf es einer zweiten Komponente, der Festlegung von Randbedingungen, um eine eindeutige Lösung für das zugrunde gelegte Modell zu erhalten, da unbedingte Differentialgleichung im Allgemeinen über eine Vielzahl von Lösungen verfügen. Randbedingungen konkretisieren das Verhalten der gesuchten Lösung an gewissen Stellen des Definitionsbereichs wie in diesem Zusammenhang das Verhalten der Optionspreise am Verfalltag der Option und am Rand des Definitionsbereichs der Kursvariable.6

[...]


1 Vgl. Black/Scholes, 1973, S.673ff.

2 Vgl. Wilmott et al., 1996, S.262 ; Higham, 2004, S.237 ; Seydel, 2000, S.77.

3 Vgl. Brennan/Schwartz, 1997, S.449ff.; Hull, 2006, S.506; Wilmott et al., 1996, S.261.

4 Vgl. Wilmott et al., 1996, S.267; Seydel, 2000, S.79. Für den Beweis der Transformation vgl. Anhang 1.

5 Vgl. Seydel 2000, S.78; Wilmott et al., 1996, S.100f.

6 Vgl. Wilmott et al., 1996, S.45.

Ende der Leseprobe aus 35 Seiten

Details

Titel
Finite Differenzen Methoden
Hochschule
Christian-Albrechts-Universität Kiel  (Institut für Geld, Währung und Kredit)
Veranstaltung
Empirical Finance & Derivative Pricing
Note
1,0
Autor
Jahr
2007
Seiten
35
Katalognummer
V71930
ISBN (eBook)
9783638689687
Dateigröße
599 KB
Sprache
Deutsch
Anmerkungen
Überblick über die alternativen Verfahren finiter Differenzen zur Optionspreisbestimmung unter Nennung der Standard-Literatur. Auch für Nicht-Mathematiker durchaus verständlich. Außerdem gibt es im Anhang Matlab-Implemtierungen für die Bewertung europäischer und amerikanischer Optionen, die die Arbeit nicht auf die theoretische Abhandlung begrenzt! Bei Bedarf wird auch gerne die zur Arbeit erarbeitete ppt-Präsentation zur Verfügung gestellt.
Schlagworte
Finite, Differenzen, Methoden, Empirical, Finance, Derivative, Pricing
Arbeit zitieren
Michael Czirr (Autor), 2007, Finite Differenzen Methoden, München, GRIN Verlag, https://www.grin.com/document/71930

Kommentare

  • Noch keine Kommentare.
Im eBook lesen
Titel: Finite Differenzen Methoden



Ihre Arbeit hochladen

Ihre Hausarbeit / Abschlussarbeit:

- Publikation als eBook und Buch
- Hohes Honorar auf die Verkäufe
- Für Sie komplett kostenlos – mit ISBN
- Es dauert nur 5 Minuten
- Jede Arbeit findet Leser

Kostenlos Autor werden