Grin logo
en de es fr
Shop
GRIN Website
Publier des textes, profitez du service complet
Go to shop › Mathématiques - Analyse

Einführung in die Periodische Spline–Interpolation an einfachen Beispielen

Titre: Einführung in die Periodische Spline–Interpolation an einfachen Beispielen

Travail de Recherche , 2009 , 123 Pages

Autor:in: Dr. rer. nat. Friedrich Krinzeßa (Auteur)

Mathématiques - Analyse
Extrait & Résumé des informations   Lire l'ebook
Résumé Résumé des informations

In dieser Abhandlung wird anhand von einfachen Beispielen die Vorgehensweise bei der periodischen Spline–Interpolation erläutert. Periodisch heißt hier nicht, dass man nur periodische Funktionen oder geschlossene Kurven erzeugen kann, was eine starke Einschränkung bedeuten würde. Mithilfe der periodischen Spline–Interpolation erhält man auch translationsinvariante Funktionen und Kurven. Es müsste eigentlich statt „periodische Spline–Interpolation“ genauer „Interpolation mit periodischen Randbedingungen“ heißen. Zwingend periodisch sind nur die Ableitungen ersten und zweiten Grades, wenn man für die Segmente ganzrationale Funktionen dritten Grades oder sogenannte kubische Bézier–Kurven verwendet. Die Segmente für Spline–Funktionen werden in dieser Abhandlung in der Taylor–Form dargestellt. Die Segmente für Spline–Kurven werden sowohl in der Bernstein–Bézier–Form (Bézier–Spline–Kurven) als auch unter Verwendung von B–Spline–Basisfunktionen (B–Spline–Kurven) angegeben. Die Koeffizienten für die Taylor–Form, die Bézier–Punkte für die Bernstein–Bézier–Form und die Kontrollpunkte (de Boor–Punkte) für die Darstellung unter Verwendung von B–Spline–Basisfunktionen werden hier nach einer neuartigen iterativen Methode berechnet. Einschränkungen, was die Anzahl der Interpolationspunkte (Datenpunkte) angeht, müssen nicht gemacht werden. Die Rechenzeit für die Koeffizienten (Taylor–Form), Bézier–Punkte oder Kontrollpunkte (de Boor–Punkte) für einen XP–Rechner (AMD Athlon Dual Core Processor 3800+) mit einem als JAVA–Applet geschriebenen Programm liegt für 10000 Interpolationspunkte (Datenpunkte) bei rund 19 s. Als kleine Hilfe für Programmierer werden wesentliche Programmteile in Form eines Struktogramms angegeben.

Résumé des informations

Titre
Einführung in die Periodische Spline–Interpolation an einfachen Beispielen
Auteur
Dr. rer. nat. Friedrich Krinzeßa (Auteur)
Année de publication
2009
Pages
123
N° de catalogue
V135270
ISBN (ebook)
9783640450084
ISBN (Livre)
9783640450725
Langue
allemand
mots-clé
Einführung Periodische Spline–Interpolation Beispielen
Sécurité des produits
GRIN Publishing GmbH
Citation du texte
Dr. rer. nat. Friedrich Krinzeßa (Auteur), 2009, Einführung in die Periodische Spline–Interpolation an einfachen Beispielen, Munich, GRIN Verlag, https://www.grin.com/document/135270
Lire l'ebook
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
  • Si vous voyez ce message, l'image n'a pas pu être chargée et affichée.
Extrait de  123  pages
Grin logo
  • Grin.com
  • Page::Footer::PaymentAndShipping
  • Contact
  • Prot. des données
  • CGV
  • Imprint